Задачи на хорды проведенные в окружности

Задачи по теме Свойства хорд, касательных и секущих к окружности. Геометрия, 8 класс.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острыйСкачать

№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острый

«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»

Сертификат и скидка на обучение каждому участнику

Задачи на хорды проведенные в окружности

Задачи по геометрии 8 класс. Касательные, отрезки пересекающихся хорд и отрезки секущих к окружности.

Свойство пересекающихся хорд: произведение

отрезков одной хорды равно произведению

отрезков другой хорды

Хорды окружности АВ и СР пересекаются в точке Е. Найти длину отрезка РЕ, если СЕ= 8см, АЕ = 3 см, ВЕ = 6 см.

Хорды окружности АК и МЕ пересекаются в точке О. Найти длину отрезка МО, если АО= 4см, ОЕ = 5 см, ОК = 15 см.

Хорды окружности АК и МЕ пересекаются в точке О. Найти длину отрезка МО и ОЕ, если АО = 2 см, ОК = 12 см, МЕ = 10 см.

Хорды окружности АВ и СР пересекаются в точке Е. Найти длину отрезка РЕ и СЕ, если СР = 12 см, АЕ=7 см, ЕВ = 4 см.

Хорды окружности АВ и СД пересекаются в точке О. Найти длину отрезка ДО и ОС, если АО = 12 см, ОВ=4 см, ДО : ОС = 3 : 4.

Хорды окружности МК и СД пересекаются в точке А. Найти длину отрезка ДО и ОС, если МА = 6 см, АК=15 см, СА : АД = 2 : 5.

Свойство секущих к окружности, исходящих из

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АС и ВС, если АМ = 3, МК = 5, АВ = 4.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и МК, если АВ = 4, ВС = 6, АК = 12.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и АС, если АМ = 2, АК = 6, длина отрезка АС на 4 больше длины отрезка АВ.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и АК, если АВ = 2, АС = 8, длина отрезка АМ на 6 меньше длины отрезка АК.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и ВС, если АМ = 4, АК = 6, АВ : ВС = 2 :4.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и АК, если АМ : АК = 3 : 5, АВ = 5, ВС = 7.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и АС, если АМ = 2, АК = 4, длина отрезка ВС на 6 больше длины отрезка АВ.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и МК, если АМ на 8 меньше длины отрезка МК и длина отрезка АВ = 3, АС = 8.

Свойство секущей и касательной к окружности,

исходящих из одной точки:

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АВ, если АК = 4, АР = 9.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АВ, если АК = 4, АР = 16.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР, если АК = 4, АВ = 8.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР, если АК = 5, АВ = 10.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АК и АР, если АВ = 5, а отрезок КР на 5 больше отрезка АК.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АК и АР, если АВ = 6, а отрезок КР на 6 больше отрезка АК.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР и АК, если АК : КР = 4 : 5, АВ = 12.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР и АК, если АК : КР = 1 : 3, АВ = 14.

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Задачи на хорды проведенные в окружности

Радиус OB окружности с центром в точке O пересекает хорду AC в точке D и перпендикулярен ей. Найдите длину хорды AC, если BD = 1 см, а радиус окружности равен 5 см.

Найдем отрезок DO: DO = OB − BD = 5 − 1 = 4. Так как OB перпендикулярен AC, треугольник AOD — прямоугольный. По теореме Пифагора имеем: Задачи на хорды проведенные в окружности. Треугольник AOC — равнобедренный так как AO = OC = r, тогда AD = DC. Таким образом, AC = AD·2 = 6.

Найдите величину (в градусах) вписанного угла α, опирающегося на хорду AB, равную радиусу окружности.

Проведем радиусы OA и OB. Так как по условию задачи хорда AB равна радиусу, то треугольник AOB — равносторонний, следовательно, все его углы равны 60°. Угол AOB — центральный и равен 60° Угол ACB — вписанный и опирается на ту же дугу, что и угол AOB. Таким образом, Задачи на хорды проведенные в окружности

К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.

Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB. Из теоремы Пифагора:

Задачи на хорды проведенные в окружности

В треугольнике ABC угол C равен 90°, AC = 30 , BC = Задачи на хорды проведенные в окружностиНайдите радиус окружности, описанной около этого треугольника.

Вписанный прямой угол опирается на диаметр окружности, поэтому радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы. По теореме Пифагора имеем:

Задачи на хорды проведенные в окружности

Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.

Проведём построение и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и HOB, они прямоугольные, OH — общая, AO и OB равны как радиусы окружности, следовательно, эти треугольники равны, откуда Задачи на хорды проведенные в окружностиПо теореме Пифагора найдём радиус окружности:

Задачи на хорды проведенные в окружности

Диаметр равен двум радиусам, следовательно, Задачи на хорды проведенные в окружности

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Задачи на свойства хорд окружности

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Задачи по теме Свойства хорд, касательных и секущих к окружности. Геометрия, 8 класс.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)Скачать

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Задачи по геометрии 8 класс. Касательные, отрезки пересекающихся хорд и отрезки секущих к окружности.

Свойство пересекающихся хорд: произведение

отрезков одной хорды равно произведению

отрезков другой хорды

Хорды окружности АВ и СР пересекаются в точке Е. Найти длину отрезка РЕ, если СЕ= 8см, АЕ = 3 см, ВЕ = 6 см.

Хорды окружности АК и МЕ пересекаются в точке О. Найти длину отрезка МО, если АО= 4см, ОЕ = 5 см, ОК = 15 см.

Хорды окружности АК и МЕ пересекаются в точке О. Найти длину отрезка МО и ОЕ, если АО = 2 см, ОК = 12 см, МЕ = 10 см.

Хорды окружности АВ и СР пересекаются в точке Е. Найти длину отрезка РЕ и СЕ, если СР = 12 см, АЕ=7 см, ЕВ = 4 см.

Хорды окружности АВ и СД пересекаются в точке О. Найти длину отрезка ДО и ОС, если АО = 12 см, ОВ=4 см, ДО : ОС = 3 : 4.

Хорды окружности МК и СД пересекаются в точке А. Найти длину отрезка ДО и ОС, если МА = 6 см, АК=15 см, СА : АД = 2 : 5.

Свойство секущих к окружности, исходящих из

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АС и ВС, если АМ = 3, МК = 5, АВ = 4.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и МК, если АВ = 4, ВС = 6, АК = 12.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и АС, если АМ = 2, АК = 6, длина отрезка АС на 4 больше длины отрезка АВ.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и АК, если АВ = 2, АС = 8, длина отрезка АМ на 6 меньше длины отрезка АК.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и ВС, если АМ = 4, АК = 6, АВ : ВС = 2 :4.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и АК, если АМ : АК = 3 : 5, АВ = 5, ВС = 7.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и АС, если АМ = 2, АК = 4, длина отрезка ВС на 6 больше длины отрезка АВ.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и МК, если АМ на 8 меньше длины отрезка МК и длина отрезка АВ = 3, АС = 8.

Свойство секущей и касательной к окружности,

исходящих из одной точки:

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АВ, если АК = 4, АР = 9.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АВ, если АК = 4, АР = 16.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР, если АК = 4, АВ = 8.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР, если АК = 5, АВ = 10.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АК и АР, если АВ = 5, а отрезок КР на 5 больше отрезка АК.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АК и АР, если АВ = 6, а отрезок КР на 6 больше отрезка АК.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР и АК, если АК : КР = 4 : 5, АВ = 12.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР и АК, если АК : КР = 1 : 3, АВ = 14.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность. Свойства отрезков пересекающихся хорд, секущих и касательных

Презентация к уроку

Цель: повысить мотивацию к обучению; развивать вычислительные навыки, сообразительность, умение работать в команде.

Окружность — это линия, состоящая из всех точек плоскости, которые находятся на заданном расстоянии от одной точки плоскости, называемой центром окружности.

На слайде изображена окружность, отмечен ее центр — точка О, проведены два отрезка: ОА и СВ. Отрезок ОА соединяет центр окружности с точкой на окружности. Он называется РАДИУСОМ (по-латыни radius — “спица в колесе”). Отрезок СВ соединяет две точки окружности и проходит через ее центр. Это диаметр окружности (в переводе с греческого – “поперечник”).

Также нам понадобится определение хорды окружности — это отрезок, соединяющий две точки окружности (на рисунке – хорда DE).

Давайте выясним вопрос о взаимном расположении прямой и окружности.

Следующий вопрос и он будет основным: выяснить свойства, которыми обладают пересекающиеся хорды, секущие и касательные.

Доказывать эти свойства вы будете на уроках математики, а наша задача научиться применять эти свойства при решении задач, так как они находят широкое применение на экзаменах и в форме ЕГЭ, и в форме ГИА.

Задание для команд.

  • Изобразить и записать свойство пересекающихся в точке Р хорд КМ и NF.
  • Изобразить и записать свойство касательной КМ и секущей КF.
  • Изобразить и записать свойство секущих КМ и МF.
  • Далее продолжим работать в парах над решением простейших задач по применению этих свойств:

    Используя данные на рисунке, найдите х. Слайд 5–6

    Кто быстрее, правильней. С последующим обсуждением и проверкой решения всех задач. Отвечающие зарабатывают для своей команды поощрительные баллы.

    Ну, а теперь приступим к решению более серьезных задач. Вашему вниманию предлагается три блока: пересекающиеся хорды, касательная и секущая, две секущие. Подробным образом разберем решение по одной задачи из каждого блока.

    (Разбирается решение с подробной записью №4, №7, №12)

    2. Практикум по решению задач

    а) Пересекающиеся хорды

    1. E – точка пересечения хорд AB и CD. AE=4, AB=10, СE:ED=1:6. Найти CD.

    Задачи на хорды проведенные в окружности

    Решение:

    2. E – точка пересечения хорд AB и CD. AB=17, CD=18, ED=2CE. Найти AE и BE.

    Задачи на хорды проведенные в окружности

    Решение:

    3. E – точка пересечения хорд AB и CD. AB=10, CD=11, BE=CE+1. Найти CE.

    Задачи на хорды проведенные в окружности

    Решение:

    4. E – точка пересечения хорд AB и CD. ED=2AE, CE=DE-1, BE=10. Найти CD.

    Задачи на хорды проведенные в окружности

    Решение:

    б) Касательная и секущая

    5. Из одной точки проведены к окружности касательная и секущая. Касательная равна 6, секущая – 18. Определить внутренний отрезок секущей.

    Задачи на хорды проведенные в окружности

    Решение:

    6. Из одной точки проведены к окружности касательная и секущая. Найти касательную, если известно, что она меньше внутреннего отрезка секущей на 4 и больше внешнего отрезка на 4.

    Задачи на хорды проведенные в окружности

    Решение:

    7. Из одной точки проведены к окружности касательная и секущая. Найти секущую, если известно, что внутренний её отрезок относится к внешнему, как 3:1, а длина касательной равна 12.

    Задачи на хорды проведенные в окружности

    Решение:

    8. Из одной точки проведены к окружности касательная и секущая. Найти внешний отрезок, секущей, если известно, что внутренний её отрезок 12, а длина касательной 8.

    Задачи на хорды проведенные в окружности

    Решение:

    9. Касательная и секущая, исходящие из одной точки, соответственно равны 12 и 24. Определить радиус окружности, если секущая удалена от центра на 12.

    Задачи на хорды проведенные в окружности

    Решение:

    10. Из одной точки проведены к окружности две секущие, внутренние отрезки которых соответственно равны 8 и 16. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой. Найти длину каждой секущей.

    Задачи на хорды проведенные в окружности

    Решение:

    11. Из одной точки проведены к окружности две секущие. Внешний отрезок первой секущей относится к своему внутреннему, как 1:3. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой и относится к своему внутреннему отрезку, как 1:8. Найти длину каждой секущей.

    Задачи на хорды проведенные в окружности

    Решение:

    12. Через точку А, которая находится вне окружности на расстоянии 7 от её центра, проведен прямая, пересекающая окружность в точках В и С. Найдите длину радиуса окружности, если АВ=3, ВС=5.

    Задачи на хорды проведенные в окружности

    Решение:

    13. Из точки А проведены к окружности секущая длиной 12 см и касательная, составляющая Задачи на хорды проведенные в окружностивнутреннего отрезка секущей. Найдите длину касательной.

    Задачи на хорды проведенные в окружности

    Решение:

    3. Закрепление знаний

    Считаю, что вы обладаете достаточным запасом знаний, чтобы отправится в небольшое путешествие по лабиринтам вашего интеллекта, посетив следующие станции:

    На станции можно находиться не более 6 минут. За каждое верное решение задачи команда получает поощрительные баллы.

    Командам вручаются маршрутные листы:

    СтанцияНомера задачОтметка о решении
    Решай-ка!№1, №3
    Соображай-ка!№5, №8
    Отвечай-ка!№10, №11
    СтанцияНомера задачОтметка о решении
    Соображай-ка!№5, №8
    Отвечай-ка!№10, №11
    Решай-ка!№1, №3
    СтанцияНомера задачОтметка о решении
    Соображай-ка!№5, №8
    Отвечай-ка!№10, №11
    Решай-ка!№1, №3

    4. Подведение итогов

    Хотелось бы подвести итоги нашего занятия:

    Помимо новых знаний надеюсь, вы лучше познакомились друг с другом, приобрели опыт работы в команде. А как вы думаете, полученные знания находят где-то применение в жизни?

    Поэт Г. Лонгфелло был еще и математиком. Наверное, поэтому яркие образы, украшающие математические понятия, которые он использовал в своем романе “Каванг”, позволяют запечатлеть на всю жизнь некоторые теоремы и их применение. Читаем в романе следующую задачу:

    “Лилия, на одну пядь поднимавшаяся над поверхностью воды, под порывом свежего ветра коснулась поверхности озера в двух локтях от прежнего места; исходя из этого требовалось определить глубину озера” (1 пядь равна 10 дюймам, 2 локтя – 21 дюйму).

    А решается эта задача на основе свойства пересекающихся хорд. Посмотрите на рисунок, и станет ясно, как находится глубина озера.

    Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

    Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

    Хорда окружности — определение, свойства, теорема

    Задачи на хорды проведенные в окружности

    Видео:Теорема об отрезках хорд и секущихСкачать

    Теорема об отрезках хорд и секущих

    Хорда в геометрии

    Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.

    Задачи на хорды проведенные в окружности

    Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.

    Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.

    Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.

    Свойства отрезка окружности

    Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:

    Задачи на хорды проведенные в окружности

    1. Это отрезок с наибольшей длиною в окружности это диаметр. Он обязательно будет проходить через центр круга.
    2. Если есть две равные дуги, то их отрезки, которые их стягивают, будут равны.
    3. Хорда, которая перпендикулярна диаметру, будет делить этот отрезок и его дугу на две одинаковые части (справедливо и обратное утверждение).
    4. Самый маленький отрезок в окружности это точка.
    5. Хорды будут равны, если они находятся на одном расстоянии от центра окружности (справедливо и обратное утверждение).
    6. При сравнении двух отрезков в кругу большая из них окажется ближе к центру окружности.
    7. Дуги, которые находятся между двумя параллельными хордами, равны.

    Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.

    Ключевая теорема

    Задачи на хорды проведенные в окружности

    Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.

    Задачи на хорды проведенные в окружности

    Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.

    Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.

    Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.

    Видео:Геометрия В окружности проведены диаметр AC и хорда AB равная радиусу окружности Найдите углыСкачать

    Геометрия В окружности проведены диаметр AC и хорда AB равная радиусу окружности Найдите углы

    Касательная и секущая

    Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.

    Задачи на хорды проведенные в окружности

    Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.

    Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.

    Задачи на хорды проведенные в окружности

    Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.

    Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.

    Задачи на хорды проведенные в окружности

    Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.

    Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.

    Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.

    Видео:Геометрия В окружности проведены хорды AB и CD, пересекающиеся в точке M. Дано: AM/МВ =5/7Скачать

    Геометрия В окружности проведены хорды AB и CD, пересекающиеся в точке M. Дано: AM/МВ =5/7

    Решение задач

    При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:

    Задачи на хорды проведенные в окружности

    • Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
    • Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
    • Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.

    Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.

    🎥 Видео

    Задача на нахождение длины хорды окружностиСкачать

    Задача на нахождение длины хорды окружности

    Хорда АВ стягивает дугу окружности в 40 градусов. Найдите угол АВС между этой хордой и касательной..Скачать

    Хорда АВ стягивает дугу окружности в 40 градусов. Найдите угол АВС между этой хордой и касательной..

    ЕГЭ. Задачи на окружность. ХордаСкачать

    ЕГЭ. Задачи на окружность. Хорда

    Окружность. 7 класс.Скачать

    Окружность. 7 класс.

    Задача 6 №27877 ЕГЭ по математике. Урок 118Скачать

    Задача 6 №27877 ЕГЭ по математике. Урок 118

    №635. Через точку А окружности проведены касательная и хорда, равная радиусу окружности.Скачать

    №635. Через точку А окружности проведены касательная и хорда, равная радиусу окружности.

    ищем хорду в окружности. огэ 1 часть геометрияСкачать

    ищем хорду в окружности. огэ 1 часть геометрия

    Теорема о диаметре, перпендикулярном хордеСкачать

    Теорема о диаметре, перпендикулярном хорде

    №636. Через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиесяСкачать

    №636. Через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся

    Геометрия В окружности проведены две хорды AB = a и AC = b. длина дуги AC вдвое больше длины дуги ABСкачать

    Геометрия В окружности проведены две хорды AB = a и AC = b. длина дуги AC вдвое больше длины дуги AB
    Поделиться или сохранить к себе: