Поурочное планирование по геометрии для 8 класса. Ориентировано на работу с УМК Атанасян и др. Геометрия 8 класс. Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 36. Решение задач на применение признаков подобия треугольников. Вернуться к Списку уроков Тематического планирования.
- Урок 36. Решение задач на применение признаков подобия треугольников
- I. Организационный момент.
- II. Актуализация знаний учащихся
- III. Самостоятельная работа
- I уровень сложности
- II уровень сложности
- III уровень сложности
- IV. Рефлексия учебной деятельности
- Узнать ещё
- Подобные треугольники в трапеции
- Основания BC и AD трапеции
- 🎦 Видео
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Урок 36. Решение задач на применение
признаков подобия треугольников
Основные дидактические цели урока: сформировать у учащихся навыки применения признаков подобия треугольников при решении задач; совершенствовать навыки доказательств теорем.
Ход урока
I. Организационный момент.
Мотивация к учебной деятельности. (Учитель сообщает тему урока, формулирует цели урока.)
II. Актуализация знаний учащихся
- Проверка домашнего задания. (Учитель проверяет решение задач № 559, 560 (б). Два ученика заранее готовят решение на доске.)
- Теоретический опрос. (Два ученика готовят доказательства теорем у доски.)
- Сформулируйте признаки подобия треугольников.
- Докажите теоремы, выражающие второй и третий признаки подобия треугольников.
- Работа по индивидуальным карточкам. (3—6 учеников работают по карточкам во время теоретического опроса.)
I уровень сложности
Подобны ли треугольники АВС и А1В1С1, если известно, что:
II уровень сложности
- Прямая, параллельная стороне MN треугольника MNK, пересекает стороны КМ и KN в точках Е и F соответственно, КЕ = 6 см, KN = 10 см, KF = 9 см, KN = 15 см. Найдите отношения. a) EF: MN, б) PKMN : РКЕF, в) SKEF : SKMN.
- Точка Е — середина стороны AD параллелограмма ABCD. В каком отношении прямая BE делит диагональ АС параллелограмма? Найдите отношение площади треугольника АВЕ и четырехугольника BCDE.
III уровень сложности
- Основания трапеции равны 9 и 6 см, а высота равна 10 см. Найдите разность расстояний от точки пересечения диагоналей трапеции до ее оснований.
- Докажите признак подобия прямоугольных треугольников по гипотенузе и катету.
- Решение задач по готовым чертежам.
- 1) Рис. 7.32. Найти: ∠C1, В1С1.
- 2) Рис. 7.33. Найти: ∠C, ∠C1
- 3) Рис. 7.34. Найти: ВМ.
- 4) Рис. 7.35. Найти: ВС.
- 5) Рис. 7.36. Найти: ∠DCA.
- 6) Рис. 7.37. Найти АВ, NC.
Ответы к задачам по готовым чертежам:
- 1) ∠C1 = 71°, В1С1 = 15 см.
- 2) ∠C = ∠C1 = 60°.
- 3) ВМ = 6 см.
- 4) BC = 20/3.
- 5)Обратите внимание! Ответ автора задания ∠DCA = 90°. Однако, этот ответ нельзя признать правильным в виду каких-то опечаток в рис.7.36. Единственный вывод из рисунка: треугольники ABC и АCD подобны (по трем сторонам), но в таком случае ответ должен быть 80°, а не 90°. Но самый противоречивый момент связан с тем, что треугольники с заявленными сторонами и углами не существуют. Если считать, что стороны на рисунке указаны правильно, то вместо 80° должно быть указано 92,73°, а вместо 55° должно быть 45,52°. Тогда правильный ответ будет ∠DCA = 92,73°.
- 6) АВ = 8, NC= 8.
(После окончания самостоятельного решения задач и самопроверки по готовым ответам выполняется самооценка.) Критерии оценивания:
- оценка «5» — правильно решены пять-шесть задачи;
- оценка «4» — правильно решены четыре задачи;
- оценка «3» — правильно решены две-три задачи;
- оценка «2» — не ставится.
(Учащиеся, справившиеся со всеми задачами, решают дополнительные задачи.)
Дополнительные задачи
- Диагональ АС трапеции ABCD (АВ||CD) делит ее на два подобных треугольника. Найдите площадь трапеции ABCD, если АВ = 25 см, ВС = 20 см, АС = 15 см.
Ответ : SABCD = 204 см 2 .
- Угол В треугольника AВС в два раза больше угла А. Биссектриса угла В делит сторону АС на части AD = 6 см и CD = 3 см. Найдите стороны треугольника АВС.
Ответ : АС = 9 см, АВ = 6√3 см, ВС = 3√3 см.
III. Самостоятельная работа
I уровень сложности
Вариант 1
- Рис. 7.38. Доказать: ΔАВС
ΔА1В1С1
Вариант 2
- Рис. 7.39. Доказать: ΔАВС
ΔА1B1С1.
II уровень сложности
Вариант 1.
- Рис. 7.40. Доказать: ΔАВС
ΔА1В1С1
Вариант 2
- Рис. 7.41. Доказать: ΔМВН
ΔСВA.
III уровень сложности
Вариант 1
- Дано: ∠1 = ∠2, AD = 4, АС = 9 (рис. 7.42). Найти: АВ, SABD : SABC.
- Диагонали четырехугольника ABCD пересекаются в точке О, АО • ВО = СО • DO. Докажите, что площади треугольников ACD и ABD равны.
Вариант 2
- Дано: ВС ⊥ АС, МН ⊥ ВС, 2МС = ВС, МН = 0,5АС (рис. 7.43). Доказать: АВ||СН. Найти. SАВС : SMCH.
- В трапеции ABCD AD и ВС — основания, О — точка пересечения диагоналей, АО : ОС = 3 : 2. Найдите отношение площадей треугольников АВС и ACD.
( Ответы на самостоятельную работу смотрите в уроке 37)
IV. Рефлексия учебной деятельности
- Сформулируйте признаки подобия треугольников.
- В каком случае подобны равносторонние, равнобедренные, прямоугольные треугольники?
Домашнее задание. Решить задачи № 562, 563, 604, 605.
Вы смотрели: Поурочное планирование по геометрии для 8 класса. УМК Атанасян и др. (Просвещение). Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 36. Решение задач на применение признаков подобия треугольников.
Видео:Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать
Узнать ещё
Знание — сила. Познавательная информация
Видео:Задача 15 ОГЭ: подобные треугольники в трапецииСкачать
Подобные треугольники в трапеции
Рассмотрим базовые задачи на подобные треугольники в трапеции.
I. Точка пересечения диагоналей трапеции — вершина подобных треугольников.
Рассмотрим треугольники AOD и COB.
Визуализация облегчает решение задач на подобие. Поэтому подобные треугольники в трапеции выделим разными цветами.
1) ∠AOD= ∠ COB (как вертикальные);
2) ∠DAO= ∠ BCO (как внутренние накрест лежащие при AD ∥ BC и секущей AC).
Следовательно, треугольники AOD и COB подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Одна из диагоналей трапеции равна 28 см и делит другую диагональ на отрезки длиной 5 см и 9 см. Найти отрезки, на которые точка пересечения диагоналей делит первую диагональ.
AO=9 см, CO=5 см, BD=28 см. BO =?, DO- ?
Доказываем подобие треугольников AOD и COB. Отсюда
Выбираем нужные отношения:
Пусть BO=x см, тогда DO=28-x см. Следовательно,
BO=10 см, DO=28-10=18 см.
Ответ: 10 см, 18 см.
Известно, что О — точка пересечения диагоналей трапеции ABCD (AD ∥ BC). Найти длину отрезка BO, если AO:OC=7:6 и BD=39 см.
Аналогичн0, доказываем подобие треугольников AOD и COB и
Пусть BO=x см, тогда DO=39-x см. Таким образом,
II. Продолжения боковых сторон трапеции пересекаются в точке.
Аналогично задаче I, рассмотрим треугольники AFD и BFC:
2) ∠ DAF= ∠ CBF (как соответственные углы при BC ∥ AD и секущей AF).
Следовательно, треугольники AFD и BFC подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке F. Меньшее основание BC равно 4 см, BF=5 см, AB=15 см. Найти большее основание трапеции.
Доказываем, треугольники AFD и BFC — подобны.
В следующий раз рассмотрим задачи на отношение площадей подобных треугольников.
Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать
Основания BC и AD трапеции
Рассмотрим еще одну задачу на подобие треугольников.
Основания BC и AD трапеции ABCD равны соответственно 9 и 36, BD=18. Доказать, что треугольники CBD и BDA подобны.
Дано : ABCD — трапеция, AD ∥ BC,
Рассмотрим треугольники и BDA.
1) ∠CBD=∠BDA (как внутренние накрест лежащие при AD ∥ BC и секущей BD)
🎦 Видео
Подобие треугольников. Трапеция.Скачать
Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать
Решение задач на тему "Подобные треугольники". 8 классСкачать
Задача на подобие треугольников 1частьСкачать
Средняя линия треугольника и трапеции. 8 класс.Скачать
Трапеция. Практическая часть - решение задачи. 8 класс.Скачать
Задание 25 Подобные треугольники в трапеции. Второй признак подобияСкачать
Геометрия . Задачи на подобие треугольников. Изи.Скачать
Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать
КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать
Подобные треугольники в трапеции || ОГЭ по математике №24Скачать
Подобные треугольники с нуля до ОГЭ | Математика ОГЭ 2023 | УмскулСкачать
Подобные треугольники в трапеции. Площадь трапеции. Геометрия 8-9 классСкачать
Задание 25 Первый признак подобия треугольников в равнобокой трапецииСкачать
Первый признак подобия треугольников. Найти подобные по рисунку. Задачи на подобиеСкачать
Найти высоту дерева Задача на подобие треугольников 2 частьСкачать