Высота тупоугольного треугольника циркулем

Как построить высоту треугольника

Рассмотрим, как построить высоту треугольника с помощью чертежного угольника.

Чтобы построить высоту остроугольного треугольника, надо приложить угольник так, чтобы одна сторона прямого угла проходила через вершину треугольника, а вторая — через противоположную этой вершине сторону.

Высота тупоугольного треугольника циркулем

AK — высота треугольника ABC, проведённая из вершины A к противолежащей стороне BC.

Высота тупоугольного треугольника циркулемBF⊥AC.

BF — высота треугольника ABC, опущенная из вершины B на сторону AC.

Высота тупоугольного треугольника циркулем

CH — высота треугольника ABC, проведённая из вершины C к стороне AB.

Все высоты треугольника пересекаются в одной точке.

Высота тупоугольного треугольника циркулемВ остроугольном треугольнике точка пересечения высот лежит внутри треугольника.

Если требуется построить все высоты треугольника, достаточно построить две, а третью провести из вершины треугольника через точку пересечения двух высот.

В прямоугольном треугольнике две стороны (катеты) являются также его высотами. Остаётся построить третью высоту.

Высота тупоугольного треугольника циркулемУгольник прикладываем прямым углом так, чтобы одна сторона проходила через гипотенузу, а другая — через прямой угол.

CD — высота прямоугольного треугольника ABC, проведённая из вершины прямого угла C к гипотенузе AB.

Высота тупоугольного треугольника циркулем

Точка пересечения высот прямоугольного треугольника — вершина прямого угла.

Высоты AC, BC и CD прямоугольного треугольника ABC пересекаются в точке C, ∠C=90°.

В тупоугольном треугольнике проще всего построить высоту, выходящую из вершины тупого угла.

Высота тупоугольного треугольника циркулем

Прикладываем угольник прямым углом так, чтобы одна его сторона проходила через наибольшую сторону треугольника, а другая — через тупой угол.

AP — высота тупоугольного треугольника ABC, проведённая из вершины тупого угла A к стороне BC.

Только высота, проведённая из вершины тупого угла, лежит внутри треугольника. Две другие высоты находятся вне него.

Высоты тупоугольного треугольника, выходящие из вершин острых углов, проведены не к противолежащим сторонам, а к прямым, содержащим эти стороны.

Чтобы построить высоту, продлеваем противолежащую сторону и прикладываем угольник прямым углом таким образом, чтобы одна сторона угольника проходила через построенную прямую, а другая — через вершину острого угла.

Высота тупоугольного треугольника циркулем

BM — высота тупоугольного треугольника ABC, проведённая из вершины острого угла B к прямой, содержащей противолежащую сторону AC.

Высота тупоугольного треугольника циркулемCN⊥AB,

CN — высота тупоугольного треугольника ABC, проведённая из вершины острого угла С к прямой, содержащей противолежащую сторону AB.

Высота тупоугольного треугольника циркулем

Точка пересечения высот тупоугольного треугольника лежит вне него, за тупым углом, напротив наибольшей стороны.

Чтобы построить точку пересечения высот треугольника ABC, продлим прямые BM, CN и AP до пересечения.

Мы рассмотрели, как строить высоты треугольника с помощью угольника.

Построение высот с помощью циркуля и линейки будем рассматривать в теме «Задачи на построение».

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Как построить высоту треугольника — основные способы

Высота тупоугольного треугольника циркулем

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

С применением циркуля

Если нужно нарисовать высоту (перпендикуляр к противоположной стороне) в произвольном треугольнике и измерить её, то лучше всего воспользоваться классическим методом построения. Он предусматривает использование циркуля в качестве основной рабочей принадлежности. Кроме этого, для работы понадобится лист бумаги, небольшая линейка, ластик и простой карандаш.

Способ начертить искомый отрезок:

Высота тупоугольного треугольника циркулем

Высота тупоугольного треугольника циркулем

  • На листе бумаги чертят треугольник (можно нарисовать заранее, чтобы сэкономить время).
  • Рисунок располагают так, чтобы вершина угла, из которого нужно начертить высоту, находилась сверху, а противоположная ему сторона фигуры была расположена горизонтально (по отношению к ученику).
  • Иглу циркуля ставят в вершине любого угла у основания.
  • Ножку с грифелем ставят в верхнюю точку треугольника, из которой проводится высота.
  • Циркулем рисуют окружность и делают пометку в месте её пересечения с основанием фигуры.
  • Аналогичным способом чертят круг из другого угла при основании. При этом важно определить новый радиус, который будет равен длине второй стороны треугольника.
  • Делают пометку в месте пересечения начерченных окружностей.
  • Ластиком стирают лишние линии, оставляя лишь поставленную точку.
  • С помощью карандаша и линейки из неё проводят отрезок к вершине, который и будет высотой треугольника.
  • Стирают линии, находящиеся под основанием.

Таким же способом можно с помощью циркуля построить высоту треугольника из любого другого угла.

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

С помощью линейки

Начертить и обозначить высоту можно и без циркуля. Для этого следует воспользоваться чертёжным угольником, 2 стороны которого перпендикулярны друг другу. Альтернативой этой школьной принадлежности могут стать 2 прямые линейки, соединённые между собой под прямым углом.

В остроугольном треугольнике

Провести высоту в треугольнике, где все углы острые (менее 90 градусов), довольно просто.

Чтобы справиться с этой задачей, нужно подготовить все необходимое и заранее начертить на бумаге геометрическую фигуру.

Правильная последовательность действий:

  • Находят вершину, из которой хотят провести перпендикуляр.
  • Совмещают угольник с противоположной стороной фигуры.
  • Перемещают чертёжную принадлежность до тех пор, пока её перпендикулярная сторона не пройдёт через вершину.
  • Простым карандашом проводят линию, которая и будет искомым отрезком.

В тупоугольной фигуре

Трёхсторонняя фигура, у которой один из углов тупой (более 90 градусов) имеет только 1 внутреннюю высоту. Для её проведения используют то же, что и в предыдущем случае.

Порядок действий:

  • Располагают чертёж так, чтобы тупой угол оказался у основания.
  • Угольник прикладывают к наибольшей стороне фигуры.
  • Совмещают перпендикулярную сторону линейки с вершиной тупого угла.
  • Соединяют 2 точки простым карандашом, получая искомую линию.

В прямоугольном и равнобедренном

В прямоугольном треугольнике нужно находить только 1 высоту. Две другие будут совпадать с катетами.

Пошаговая инструкция:

  • Прикладывают одну из перпендикулярных сторон угольника к гипотенузе.
  • Вторую сторону линейки совмещают с вершиной прямого угла.
  • Проводят линию, которая будет высотой.

Высота тупоугольного треугольника циркулем

Проще всего проводить перпендикуляр из верхней точки равнобедренного треугольника.

Он будет совпадать с биссектрисой и медианой фигуры. Начертить его можно таким же способом, что и для остроугольной фигуры. Более простой метод предусматривает выполнение следующих действий:

  • Линейкой замеряют длину основания.
  • Эту величину делят на 2.
  • Полученное значение откладывают от вершины одного из углов при основании.
  • Отмечают середину стороны и соединяют её с верхней точкой фигуры.

Проведение высоты в треугольнике — это простая задача, с которой легко справится каждый ученик.

Для этого достаточно сделать чертёж геометрической фигуры и воспользоваться одним из существующих способов построения. Такая работа потребует минимум времени и не отнимет у школьника много сил.

Видео:Высота медиана биссектриса в тупоугольном треугольникеСкачать

Высота  медиана биссектриса в  тупоугольном треугольнике

Высота треугольника

Расстояние между вершиной треугольника и противоположной стороной называется высотой. Формально, это самый короткий отрезок между вершиной треугольника и (с возможным продлением) противоположной стороной.

Высота тупоугольного треугольника циркулем

Каждый треугольник имеет 3 высоты которые пересекаются в одной точке — ортоцентре. Если мы используем стандартные обозначения, в треугольнике ABC , есть три высоты: AHa, BHb, CHc . Эти три отрезка пересекаются в одной точке — ортоцентре (точка H на рисунке) треугольника. Для тупого треугольника (имеющего один угол, больше чем 90°), ортоцентр находится за пределами треугольника.

Высоты остроугольного треугольника

Высота тупоугольного треугольника циркулем

Ортоцентр — это точка внутри треугольника.

∠ AHB = 180 — γ = α + β
∠ BHC = 180 — α = β + γ
∠ AHC = 180 — β = α + γ
∠ AHHc = β, ∠ BHHc = α, ∠ BHHa = γ

Высоты тупоугольного треугольника

Высота тупоугольного треугольника циркулем

Ортоцентр находится вне треугольнка.
Две высоты также всегда лежат вне треугольника.
∠ AHHc = ∠ CBA = β
∠ HcHB = ∠ CAB = α

Правый треугольник

Высота тупоугольного треугольника циркулем

Высота AHa совпадает с AC.
Высота BHb совпадает с BC.
Ортоцентр H совпадает с C.
∠ ACHc = β, ∠ BCHc

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Формулы

R — радиус описанной окружности
r — радиус вписанной окружности
p — полуперимерт: (a + b + c)/2

🔥 Видео

№154. Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.Скачать

№154. Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.

Высоты треугольника.Скачать

Высоты треугольника.

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Точка пересечения высот треугольника.Скачать

Точка пересечения высот треугольника.

Построение биссектрисы в треугольникеСкачать

Построение биссектрисы в треугольнике

ПОСТРОЕНИЕ ВЫСОТЫ ТРЕУГОЛЬНИКА С ПОМОЩЬЮ ЦИРКУЛЯ. ЗАДАЧИ НА ПОСТРОЕНИЕ | ГЕОМЕТРИЯ 7 классСкачать

ПОСТРОЕНИЕ ВЫСОТЫ ТРЕУГОЛЬНИКА С ПОМОЩЬЮ ЦИРКУЛЯ. ЗАДАЧИ НА ПОСТРОЕНИЕ | ГЕОМЕТРИЯ 7 класс

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Задачи на построение с помощью циркуля и линейки - 7 класс геометрияСкачать

Задачи на построение с помощью циркуля и линейки - 7 класс геометрия

Построение биссектрисы угла. 7 класс.Скачать

Построение биссектрисы угла. 7 класс.

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Как построить все высоты в тупоугольном треугольнике #shortsСкачать

Как построить все высоты в тупоугольном треугольнике #shorts

Построение высоты равнобедренного треугольника с помощью циркуля и линейкиСкачать

Построение высоты равнобедренного треугольника с помощью циркуля и линейки

Треугольник, построение высоты.Скачать

Треугольник, построение высоты.

Как построить высоту в треугольнике?Скачать

Как построить высоту в треугольнике?
Поделиться или сохранить к себе: