Высота треугольника вне треугольника

Высота треугольника. Задача Фаньяно
Высота треугольника вне треугольникаВысота треугольника. Свойство высоты прямоугольного треугольника
Высота треугольника вне треугольникаРасположение высот у треугольников различных типов
Высота треугольника вне треугольникаОртоцентр треугольника
Высота треугольника вне треугольникаРасположение ортоцентров у треугольников различных типов
Высота треугольника вне треугольникаОртоцентрический треугольник
Высота треугольника вне треугольникаЗадача Фаньяно

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Высота треугольника. Свойство высоты прямоугольного треугольника

Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

Высота треугольника вне треугольника

На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.

Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Высота треугольника вне треугольника

Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.

Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Расположение высот у треугольников различных типов

ФигураРисунокОписание
Остроугольный треугольникВысота треугольника вне треугольникаВсе высоты остроугольного треугольника лежат внутри треугольника.
Высота треугольника вне треугольника
Высота треугольника вне треугольника
Прямоугольный треугольникВысота треугольника вне треугольникаВысоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Высота треугольника вне треугольника
Высота треугольника вне треугольника
Тупоугольный треугольникВысота треугольника вне треугольникаВысоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Высота треугольника вне треугольника
Высота треугольника вне треугольника
Остроугольный треугольник
Высота треугольника вне треугольникаВысота треугольника вне треугольникаВысота треугольника вне треугольника
Все высоты остроугольного треугольника лежат внутри треугольника.
Прямоугольный треугольник
Высота треугольника вне треугольникаВысота треугольника вне треугольникаВысота треугольника вне треугольника
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Тупоугольный треугольник
Высота треугольника вне треугольникаВысота треугольника вне треугольникаВысота треугольника вне треугольника
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Все высоты остроугольного треугольника лежат внутри треугольника.

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Видео:ВЫСОТА ТРЕУГОЛЬНИКА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ВЫСОТА ТРЕУГОЛЬНИКА 😉 #егэ #математика #профильныйегэ #shorts #огэ

Ортоцентр треугольника

Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.

Следовательно, точка B является серединой стороны C1A1 .

Следовательно, точка A является серединой стороны C1B1 .

Следовательно, точка C является серединой стороны B1A1 .

Высота треугольника вне треугольника

Высота треугольника вне треугольника

и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.

Теорема 1 доказана.

Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.

У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.

Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Расположение ортоцентров у треугольников различных типов

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Высота треугольника вне треугольника

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Высота треугольника вне треугольника

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Ортоцентрический треугольник

Решим следующую задачу.

Задача . В остроугольном треугольнике ABC проведены высоты AD и BE (рис.5). Доказать, что треугольник DCE подобен треугольнику ABC .

Высота треугольника вне треугольника

Решение . Рассмотрим треугольники ADC и BEC . Эти треугольники подобны в силу признака подобия прямоугольных треугольников с равными острыми углами (угол C общий). Следовательно, справедливо равенство

Высота треугольника вне треугольника

Это равенство, а также наличие общего угла C позволяют на основании признака подобия треугольников заключить, что и треугольники DCE и ABC подобны. Решение задачи завершено.

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Определение 3 . Ортоцентрическим треугольником (ортотреугольником) называют треугольник, вершинами которого служат основания высот исходного треугольника (рис 6).

Высота треугольника вне треугольника

Из определения 3 и следствия 1 вытекает следствие 2.

Следствие 2 . Пусть FDE – ортоцентрический треугольник с вершинами в основаниях высот остроугольного треугольника ABC (рис 7).

Высота треугольника вне треугольника

Тогда справедливы равенства

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Из следствия 2 вытекает теорема 2.

Теорема 2 . Высоты остроугольного треугольника являются биссектрисами углов его ортоцентрического треугольника (рис.7).

Доказательство . Воспользовавшись следствием 2, получаем:

Высота треугольника вне треугольника

Высота треугольника вне треугольника

что и требовалось доказать.

Видео:Высоты треугольника.Скачать

Высоты треугольника.

Задача Фаньяно

Задача Фаньяно . Рассматриваются всевозможные треугольники DEF , вершины D, E и F которых лежат на сторонах BC, AC и AB остроугольного треугольника ABC соответственно. Доказать, что из всех треугольников DEF наименьшим периметром обладает ортоцентрический треугольник треугольника ABC .

Решение . Пусть DEF – один из рассматриваемых треугольников. Обозначим символом D1 точку, симметричную точке D относительно прямой AC , и обозначим символом D2 точку, симметричную точке D относительно прямой AB (рис.8).

Высота треугольника вне треугольника

Поскольку отрезок прямой – кратчайшее расстояние между двумя точками, то периметр треугольника DEF оказывается не меньшим, чем длина отрезка D1D2 . Отсюда вытекает, что при фиксированной точке D наименьшим периметром обладает такой треугольник DEF , вершины F и E которого являются точками пересечения прямой D1D2 с прямыми AB и AC соответственно. Периметр этого треугольника равен длине отрезка D1D2 (рис.9).

Высота треугольника вне треугольника

Заметим также, что выполнено равенство

Кроме того, выполнено равенство

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Отсюда вытекает, что длина отрезка D1D2 будет наименьшей тогда, когда длина отрезка AD будет наименьшей, т.е. в том случае, когда отрезок AD является высотой треугольника ABC . Другими словами, наименьшим периметром обладает такой треугольник DEF , у которого вершина D является основанием высоты треугольника ABC , проведённой из вершины A , а вершины E и F построены по описанной выше схеме. Таким образом, среди всевозможных треугольников DEF треугольник с наименьшим периметром является единственным.

Если обозначить длину высоты, проведённой из вершины A , длину стороны AB и радиус описанной около треугольника ABC окружности буквами h, c и R соответственно, то, воспользовавшись теоремой синусов, получим:

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Следовательно, наименьший периметр рассматриваемых треугольников DEF равен

Высота треугольника вне треугольника

Теперь докажем, что ортоцентрический треугольник и является треугольником с наименьшим периметром. Для этого воспользуемся следующей леммой.

Лемма . Пусть DEF – ортоцентрический треугольник треугольника ABC (рис.10).

Высота треугольника вне треугольника

В этом случае отрезок D1D2 проходит через точки F и E .

Доказательство . Заметим, что в силу следствия 2 выполняются равенства:

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Кроме того, в силу равенства треугольников DFK и KFD2 , а также в силу равенства треугольников DEL и LED1 выполняются равенства:

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

Высота треугольника вне треугольника

откуда вытекает, что углы AEF и D1EL , а также AFE и D2FK являются вертикальными углами. Это означает, что точки D1 , F, E , D2 лежат на одной прямой. Лемма доказана.

Доказательство леммы и завершает решение задачи Фаньяно.

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Высота треугольника

В отличие от медианы или биссектрисы, высота треугольника может быть расположена как внутри треугольника, так и вне его.

Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Высота треугольника вне треугольника

На рисунке BF — высота, проведенная из вершины B к стороне AC.

Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Высота треугольника вне треугольника

Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника (позднее рассмотрим ее свойства).

Высота треугольника вне треугольника

AC — высота, проведенная из вершины С к стороне AB.

AB — высота, проведенная из вершины B к стороне AC.

AK — высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А — ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота — та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

Высота треугольника вне треугольникаAK — высота, проведенная к стороне BC.

BF — высота, проведенная к продолжению стороны АС.

CD — высота, проведенная к продолжению стороны AB.

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

Видео:Геометрия 7.Треугольники урок 6. Высота треугольника. Определение, свойства, точки пересечения высотСкачать

Геометрия 7.Треугольники урок 6. Высота треугольника. Определение, свойства, точки пересечения высот

Определение и свойства высоты треугольника

В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.

Видео:17. Медианы, биссектрисы и высоты треугольникаСкачать

17. Медианы, биссектрисы и высоты треугольника

Определение высоты треугольника

Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.

Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).

Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Высота в разных видах треугольников

В зависимости от вида фигуры высота может:

  • проходить внутри треугольника (в остроугольном △);
    Высота треугольника вне треугольника
  • проходить за рамками треугольника (в тупоугольном △);
    Высота треугольника вне треугольника
  • являться одним из катетов (в прямоугольном △), за исключением высоты, проведенной к гипотенузе.
    Высота треугольника вне треугольника

Видео:Медианы, биссектрисы и высоты треугольника | Геометрия 7-9 класс #18 | ИнфоурокСкачать

Медианы, биссектрисы и высоты треугольника | Геометрия 7-9 класс #18 | Инфоурок

Свойства высоты треугольника

Свойство 1

Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).

  • в остроугольном треугольнике;
    Высота треугольника вне треугольника
  • в тупоугольном треугольнике;
    Высота треугольника вне треугольника
  • в прямоугольном треугольнике.
    Высота треугольника вне треугольника
    Вершина A является, в т.ч., точкой пересечения высот.

Свойство 2

При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:

  • ABE∼△CBF: по двум углам (∠ABC – общий, ∠AEB и ∠CFB являются прямыми).
    Высота треугольника вне треугольника
  • AFG∼△CEG: по двум углам (∠AFG и ∠CEG – прямые, ∠AGF и ∠CGE равны как вертикальные углы).
  • ABC∼△BEF: по трем равным углам (∠ABC = ∠EBF, ∠ACB =BFE,CAB =BEF).
    Высота треугольника вне треугольника
    Примечание: доказательство подобия последней пары треугольников достаточно длинное и не является целью данной статьи, поэтому подробно останавливаться на нем будем.

Свойство 3

Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.

Высота треугольника вне треугольника

Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.

Свойство 4

Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.

Высота треугольника вне треугольника

Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.

🎬 Видео

8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

Как построить биссектрису, медиану и высоту в треугольникеСкачать

Как построить биссектрису, медиану и высоту в треугольнике

ТРЕУГОЛЬНИК: высота треугольника, биссектриса треугольника, медиана треугольникСкачать

ТРЕУГОЛЬНИК: высота треугольника, биссектриса треугольника, медиана треугольник

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

РАВНЫЕ ТРЕУГОЛЬНИКИ. Высоты. Медианы. Биссектрисы. §7 геометрия 7 классСкачать

РАВНЫЕ ТРЕУГОЛЬНИКИ. Высоты. Медианы. Биссектрисы.  §7 геометрия 7 класс

№499. Найдите меньшую высоту треугольника со сторонами, равными: а) 24 см, 25 см, 7 см; б) 15Скачать

№499. Найдите меньшую высоту треугольника со сторонами, равными: а) 24 см, 25 см, 7 см; б) 15

Медиана, биссектриса, высота треугольника | ГеометрияСкачать

Медиана, биссектриса, высота треугольника | Геометрия

Геометрия 8 класс (Урок№31 - Теорема о пересечении высот треугольника.)Скачать

Геометрия 8 класс (Урок№31 - Теорема о пересечении высот треугольника.)

ГЕОМЕТРИЯ 8 класс: 4 замечательные точкиСкачать

ГЕОМЕТРИЯ 8 класс: 4 замечательные точки
Поделиться или сохранить к себе:
ФигураРисунокОписание
Остроугольный треугольникВысота треугольника вне треугольника
Прямоугольный треугольникВысота треугольника вне треугольника