Выбрать пары равных треугольников

Признаки равенства треугольников — определение и вычисление с примерами решения

Содержание:

Если на плоскости отметить три точки А, В и С, не лежащие на одной прямой, и соединить их отрезками, то получим треугольник ABC. Можно сказать, что треугольник — это трехзвенная замкнутая ломаная. Обозначают: Выбрать пары равных треугольников

Видео:Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Определения

Выбрать пары равных треугольников

Определение. Треугольником называется трехзвенная замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Если соединить концами три деревянных планки, то получится треугольник, который нельзя подвергнуть деформации — он будет сохранять свою форму. Тогда как четырехугольник может менять свою форму (рис. 102)? Это свойство «жесткости» треугольника широко используется в технике, производстве, строительстве.
Выбрать пары равных треугольников

Равные треугольники

Равные треугольники можно совместить наложением так, что соответственно совпадут все три стороны и все три угла (рис. 103). В совпавших, то есть в равных треугольниках, против равных сторон лежат равные углы, а против равных углов — равные стороны. Если Выбрать пары равных треугольниковто Выбрать пары равных треугольникова если Выбрать пары равных треугольниковто Выбрать пары равных треугольников

Выбрать пары равных треугольников

Для совмещения равных отрезков достаточно совпадения их концов, а для совмещения равных треугольников — совпадения их вершин.

Виды треугольников

Если у треугольника все три стороны имеют разную длину, то такой треугольник называется разносторонним.

Треугольник, у которого две стороны равны, называется равнобедренным. Его равные стороны называются боковыми сторонами, третья сторона — основанием, вершина, противолежащая основанию, — вершиной равнобедренного треугольника (рис. 104).

Выбрать пары равных треугольников

Если у треугольника равны все три стороны, то он называется равносторонним (рис. 105). Равносторонний треугольник является также и равнобедренным, где любую пару сторон можно принять за боковые стороны.

Выбрать пары равных треугольников

По величине углов треугольники делятся на остроугольные (у них все углы острые), тупоугольные (есть тупой угол) и прямоугольные (есть прямой угол) (рис. 106).

Выбрать пары равных треугольников

Треугольником называется трехзвенная замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Периметром треугольника (многоугольника) называется сумма длин его сторон.

Равными треугольниками называются треугольники, которые можно совместить наложением.

Равнобедренным треугольником называется треугольник, у которого две стороны равны.

Равносторонним треугольником называется треугольник, у которого все стороны равны.

Свойство равных треугольников. В равных треугольниках против равных сторон лежат равные углы, а против равных углов — равные стороны.

Замечание. Называя или записывая равные треугольники, стараются соблюдать последовательность соответствующих вершин. Во многих случаях это удобно. Однако делать это необязательно. Обе записи: Выбрать пары равных треугольниковАВС =Выбрать пары равных треугольниковKNM и Выбрать пары равных треугольниковBAC =Выбрать пары равных треугольниковKNM — правильные. Иногда соответствующие вершины равных треугольников обозначают одними и теми же буквами, добавляя к буквам одного из треугольников индекс: Выбрать пары равных треугольниковАВС = = Выбрать пары равных треугольниковА1В1С1. При такой записи имеют в виду, что соответствующими являются вершины А и А1, В и В1, С и С1.

Первый и второй признаки равенства треугольников

При выяснении равны ли треугольники нет необходимости устанавливать равенство всех их соответствующих элементов путем наложения или измерения. Следующие две теоремы гарантируют равенство треугольников при равенстве некоторых сторон и углов.

Теорема (первый признак равенства треугольников). Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: АВ =А1В1, АС =А1С1, Выбрать пары равных треугольниковA = Выбрать пары равных треугольниковA1 (рис. 108).

Выбрать пары равных треугольников

Доказать: Выбрать пары равных треугольниковАВС = Выбрать пары равных треугольниковА1В1С1.

Доказательство:

Наложим треугольник ABC на треугольник А1В1С1 так, чтобы совпали равные углы А и А1, луч АВ совпал с лучом А1В1, а луч АС совпал с лучом А1С1. Так как отрезки АВ и А1В1 равны, то они совпадут при наложении, и вершина В совпадет с вершиной В1. Аналогично совпадут равные отрезки АС и A1C1, вершина С совпадет с вершиной C1. Треугольники совпадут полностью, так как совпадут их вершины. Таким образом, Выбрать пары равных треугольниковАВС = Выбрать пары равных треугольниковА1В1С1. Теорема доказана.

Говорят, что две стороны и угол между ними задают треугольник однозначно.

Теорема (второй признак равенства треугольников). Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

AC =А1С1, Выбрать пары равных треугольниковA = Выбрать пары равных треугольниковА1, Выбрать пары равных треугольниковC = Выбрать пары равных треугольниковС1 (рис. 109).

Доказать: Выбрать пары равных треугольниковАВС = Выбрать пары равных треугольниковА1В1С1.

Доказательство:

Наложим треугольник ABC на треугольник А1В1С1 так, чтобы совпали равные стороны АС и А1С1, угол А совпал с равным углом А1, а угол С — с равным углом Сх. Тогда луч АВ совпадет с лучом А1В1, луч СВ — с лучом С1В1, а вершина В совпадет с вершиной В1 (точка В будет принадлежать и прямой
А1В1, и прямой С1В1, и поэтому совпадет с точкой их пересечения В1). Треугольники совпадут полностью, так как совпадут их вершины. Таким образом, Выбрать пары равных треугольниковАВС = Выбрать пары равных треугольниковА1В1С1. Теорема доказана.

Говорят, что сторона и два прилежащих к ней угла задают треугольник однозначно

Пример №1

Отрезки АВ и CD пересекаются в их серединах. Доказать, что расстояния между точками А и С, В и D равны.

Выбрать пары равных треугольников

Доказательство:

Пусть О — точка пересечения отрезков АВ и CD (рис. 110). Рассмотрим Выбрать пары равных треугольниковАОС и Выбрать пары равных треугольниковBOD. У них АО = ОВ, CO = OD по условию, Выбрать пары равных треугольниковAOC = Выбрать пары равных треугольниковBOD как вертикальные. Треугольники равны по двум сторонам и углу между ними, то есть по 1-му признаку равенства треугольников. Стороны АС и BD равны, так как в равных треугольниках против равных углов лежат равные стороны.

Возможно краткое оформление решения задачи.Выбрать пары равных треугольников

Пример №2

Дана простая замкнутая ломаная ABCD, у которой АВ =AD = 6 см, CD -4 см и луч АС является биссектрисой угла BAD. Найти длину ломаной ABCD.

Решение:

У треугольников ABC и ADC сторона АС — общая (рис. 111), AB=AD по условию, Выбрать пары равных треугольниковBAC =Выбрать пары равных треугольниковDAC, так как АС — биссектриса угла BAD.

Выбрать пары равных треугольников

Эти треугольники равны по 1-му признаку равенства треугольников.

Отсюда ВС = CD как соответствующие (соответственные) стороны в двух равных треугольниках.

Длина ломаной ABCD: Выбрать пары равных треугольников

Пример №3

На сторонах угла В отложены отрезки: ВА = ВС, КА-МС (рис. 112). Доказать, что Выбрать пары равных треугольниковA = Выбрать пары равных треугольниковС.

Выбрать пары равных треугольников

Доказательство:

Рассмотрим треугольники АВМ и СВК. У них Выбрать пары равных треугольниковB — общий, АВ = СВ по условию, MB=KB, так как MB = СВ — СМ, KB =АВ -АК (если от равных отрезков отнять равные, получим равные отрезки). Треугольники АВМ и СВК равны по двум сторонам и углу между ними. Из равенства треугольников следует, что Выбрать пары равных треугольниковA = Выбрать пары равных треугольниковC (в равных треугольниках против равных сторон лежат равные углы).

Пример №4

На рисунке 113 Выбрать пары равных треугольниковBAD = Выбрать пары равных треугольниковCDA, Выбрать пары равных треугольниковCAD = Выбрать пары равных треугольниковBDA. Доказать равенство треугольников АОВ и DOC.

Выбрать пары равных треугольников

Доказательство:

Так как Выбрать пары равных треугольниковABD =Выбрать пары равных треугольниковDCA по 2-му признаку равенства треугольников (сторона AD — общая, углы при стороне AD соответственно равны по условию), то АВ = DC, Выбрать пары равных треугольниковB =Выбрать пары равных треугольниковC.

Так как Выбрать пары равных треугольниковBAO = Выбрать пары равных треугольниковBAD — Выбрать пары равных треугольниковCAD, Выбрать пары равных треугольниковCDO = Выбрать пары равных треугольниковCDA — Выбрать пары равных треугольниковBDA, тo Выбрать пары равных треугольниковBAO =Выбрать пары равных треугольниковCDO (если от равных углов отнять равные, получим равные углы). Тогда Выбрать пары равных треугольниковАОВ = Выбрать пары равных треугольниковDOC по 2-му признаку равенства треугольников.

Высота, медиана и биссектриса треугольника

У треугольника, помимо трех сторон, трех вершин и трех углов, имеются также и другие элементы — высота, медиана и биссектриса.
Выбрать пары равных треугольников

Определение. Высотой треугольника (рис. 118, а) называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на ее продолжение (отрезок ВН).

Определение. Медианой треугольника (рис. 118, б) называется отрезок, который соединяет вершину треугольника с серединой противоположной стороны (отрезок ВМ).

Определение. Биссектрисой треугольника (рис. 118, в) называется отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой пересечения биссектрисы с противоположной стороной (отрезок ВК).

В равных треугольниках равны соответствующие высоты, медианы и биссектрисы.

Если треугольник не равнобедренный, то высота, медиана и биссектриса, проведенные из одной вершины треугольника, не совпадают (рис. 119).

Выбрать пары равных треугольников

Поскольку у треугольника три вершины, то у него и три высоты, три медианы, три биссектрисы. Позже мы докажем, что высоты треугольника (или их продолжения) пересекаются в одной точке. Это же касается медиан треугольника (рис. 120) и его биссектрис (рис. 121).

Выбрать пары равных треугольников

Если треугольник остроугольный (рис. 122, а), то точка пересечения его высот находится внутри треугольника ABC. Если треугольник тупоугольный или прямоугольный (рис. 122, б, в), то продолжения высот пересекаются соответственно вне треугольника или в вершине прямого угла.

Выбрать пары равных треугольников

Точки пересечения высот, биссектрис и медиан называются замечательными точками треугольника.

Геометрия 3D

Тетраэдром или треугольной пирамидой называется многогранник, у которого все четыре грани — треугольники. Любую его грань можно принять за основание, а противолежащую вершину — за вершину пирамиды. Если точка S — вершина, а треугольник ABC — основание пирамиды, то перпендикуляр SH к плоскости ABC является высотой тетраэдра (рис. 124).
Выбрать пары равных треугольников

Равнобедренный треугольник

Определение. Треугольник называется равнобедренным, если у него две стороны равны.

Равные стороны называются боковыми сторонами, третья сторона — основанием, вершина, противолежащая основанию, — вершиной равнобедренного треугольника.

Рассмотрим некоторые свойства равнобедренного треугольника и один из его признаков.

Теорема (о свойстве углов при основании). В равнобедренном треугольнике углы при основании равны.

Дано: Выбрать пары равных треугольников(рис. 126).

Выбрать пары равных треугольников

Доказать: Выбрать пары равных треугольников

Доказательство:

Проведем биссектрису ВК треугольника ABC. Треугольники АВК и СВК равны по двум сторонам и углу между ними: сторона ВК — общая, АВ = ВС по условию, углы АВК и СВК равны по определению биссектрисы. Из равенства этих треугольников следует, что Выбрать пары равных треугольниковТеорема доказана.

Теорема (о свойстве биссектрисы равнобедренного треугольника).

В равнобедренном треугольнике биссектриса, проведенная к основанию, является его медианой и высотой.

Дано: Выбрать пары равных треугольников— биссектриса (рис. 127).

Выбрать пары равных треугольников

Доказать: ВК — медиана и высота.

Доказательство:

Треугольники АВК и СВК равны по двум сторонам и углу между ними (см. предыдущую теорему). Из равенства треугольников следует, что АК=КС и Выбрать пары равных треугольников1 =Выбрать пары равных треугольников2. Так как углы 1 и 2 смежные, то их сумма равна 180°, поэтому Выбрать пары равных треугольниковСледовательно, ВК — медиана и высота. Теорема доказана.

Замечание. Поскольку из вершины треугольника можно провести только одну биссектрису, одну высоту и одну медиану, то теорему можно сформулировать так: «Биссектриса, высота и медиана равнобедренного треугольника, проведенные из вершины к основанию, совпадают». То есть если по условию задачи дана высота равнобедренного треугольника, проведенная к основанию, то согласно данной теореме она является биссектрисой и медианой. Аналогично, если дана медиана равнобедренного треугольника, проведенная к основанию, то она является высотой и биссектрисой.

Теорема (признак равнобедренного треугольника). Если в треугольнике два угла равны, то он равнобедренный.

Дано: Выбрать пары равных треугольников

Доказать:Выбрать пары равных треугольников

Доказательство:

Мысленно перевернем треугольник ABC обратной стороной (рис. 128) и наложим перевернутый треугольник на треугольник ABC так, чтобы их стороны АС совпали, угол С совпал с углом А, угол А совпал с углом С.

Выбрать пары равных треугольников

Тогда перевернутый треугольник совместится с данным, и сторона ВС совместится со стороной АВ. Следовательно, АВ = ВС, т. е. Выбрать пары равных треугольниковАВС — равнобедренный. Теорема доказана.

Доказанный признак равнобедренного треугольника является теоремой, обратной теореме о свойстве углов при основании равнобедренного треугольника (рис. 129).

Выбрать пары равных треугольников

Напомним, что любая теорема состоит из условия — того, что дано, и заключения — того, что нужно доказать. У теоремы, обратной данной, условием является заключение данной теоремы, а заключением — условие данной.

Пример №5

Доказать, что в равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны между собой.

Доказательство:

Пусть в Выбрать пары равных треугольниковАВС АВ =ВС, АК и СМ — биссектрисы (рис. 130). Нужно доказать, что АК = СМ. Рассмотрим Выбрать пары равных треугольниковАКВ и Выбрать пары равных треугольниковСМВ. У них Выбрать пары равных треугольниковB — общий, АВ = ВС по условию, Выбрать пары равных треугольниковBAK = Выбрать пары равных треугольниковBCM как половины равных углов А и С при основании равнобедренного треугольника. Тогда Выбрать пары равных треугольниковАКВ = Выбрать пары равных треугольниковСМВ по 2-му признаку равенства треугольников, откуда АК = СМ. Что и требовалось доказать.

Замечание. Вторым способом доказательства будет рассмотрениеВыбрать пары равных треугольниковАКС иВыбрать пары равных треугольниковСМА и доказательство их равенства.

Пример №6

Доказать, что перпендикуляр, проведенный из центра окружности к хорде, делит эту хорду пополам.

Доказательство:

Пусть О — центр окружности, АВ — хорда, ОН — перпендикуляр к хорде АВ (рис. 131).

Выбрать пары равных треугольников

Отрезки OA и ОВ равны как радиусы. Поэтому треугольник АОВ — равнобедренный, а ОН — его высота, проведенная к основанию. Мы знаем, что высота равнобедренного треугольника, проведенная к основанию, является и медианой. А медиана делит сторону треугольника пополам, то есть АН = НВ. Что и требовалось доказать.

Признаки равнобедренного треугольника

Вы уже знаете один признак равнобедренного треугольника: «Если в треугольнике два угла равны, то треугольник равнобедренный». Докажем еще три признака равнобедренного треугольника, связанных с его высотой, медианой и биссектрисой.

Теорема. Если в треугольнике высота является медианой, то треугольник равнобедренный.

Дано: ВН — высота и медиана Выбрать пары равных треугольниковАВС (рис. 136).

Выбрать пары равных треугольников

Доказательство:

Рассмотрим Выбрать пары равных треугольниковАВН и Выбрать пары равных треугольниковСВН. У них сторона ВН — общая, Выбрать пары равных треугольников Выбрать пары равных треугольников(так как ВН — высота), АН = СН (так как ВН — медиана). Треугольники АВН и СВН равны по двум сторонам и углу между ними. Из равенства треугольников следует равенство соответствующих сторон АВ и ВС. Теорема доказана.

Теорема. Если в треугольнике высота является биссектрисой, то треугольник равнобедренный.

Дано: ВН — высота и биссектриса Выбрать пары равных треугольниковАВС.

Доказать: АВ = ВС (рис. 137).

Выбрать пары равных треугольников

Доказательство:

Рассмотрим Выбрать пары равных треугольниковАВН и Выбрать пары равных треугольниковСВН. У них сторона ВН — общая, Выбрать пары равных треугольников Выбрать пары равных треугольников(так как ВН — высота), Выбрать пары равных треугольников Выбрать пары равных треугольников(так как ВН — биссектриса). Треугольники АВН и СВН равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует равенство соответствующих сторон АВ и ВС. Теорема доказана.

Теорема. Если в треугольнике медиана является биссектрисой, то треугольник равнобедренный.

Дано: ВМ — медиана и биссектриса Выбрать пары равных треугольниковАВС.

Доказать: АВ = ВС (рис. 138).

Доказательство:

Продлим медиану ВМ на ее длину за точку М. Получим МВХ = ВМ. Треугольники АМВ1 и СМВ равны по двум сторонам и углу между ними (МВ1 = ВМ по построению; AM = МС, так как ВМ — медиана; Выбрать пары равных треугольниковAMВ1 =Выбрать пары равных треугольниковCMB как вертикальные). Из равенства этих треугольников следует, что АВ1=ВС и Выбрать пары равных треугольниковAB1M = =Выбрать пары равных треугольниковCBM. Но ZCBM = ZABM, так как ВМ — биссектриса по условию. Тогда Выбрать пары равных треугольниковAB1B = Выбрать пары равных треугольниковABB1 и Выбрать пары равных треугольниковАВВ1 — равнобедренный по признаку равнобедренного треугольника. Следовательно, АВ=АВ1. А так как АВ1=ВС, то АВ = ВС. Теорема доказана.

Замечание. Прием продления (продолжения) медианы часто используется при решении геометрических задач.

Пример №7

В треугольнике ABC с периметром 54 см медиана АК перпендикулярна стороне ВС, а высота ВМ составляет равные углы со сторонами ВА и ВС. Найти стороны треугольника ABC.

Решение:

Так как медиана АК является и высотой, то Выбрать пары равных треугольниковАВС — равнобедренный с основанием ВС и АВ =АС. Так как высота ВМ является и биссектрисой, то Выбрать пары равных треугольниковАВС — равнобедренный с основанием АС и АВ = ВС. Тогда Выбрать пары равных треугольниковАВС — равносторонний, Выбрать пары равных треугольников Выбрать пары равных треугольников(см).

Пример №8

Биссектриса АК треугольника АБС делит сторону ВС пополам. Периметр треугольника ABC равен 36 см, периметр треугольника АКС равен 30 см. Найти длину биссектрисы АК.

Решение:

Из условия следует, что биссектриса АК является и медианой Выбрать пары равных треугольниковАВС (рис. 139).

Выбрать пары равных треугольников

Тогда Выбрать пары равных треугольниковАВС — равнобедренный по признаку равнобедренного треугольника и АВ=АС. Так как ВК = СК, то сумма отрезков АС и СК равна полупериметру Выбрать пары равных треугольниковАВС, то есть 18 см. По условию периметр Выбрать пары равных треугольниковАКС равен 30 см, поэтому АК = 30 — 18 = 12 (см).

Геометрия 3D

У правильной треугольной пирамиды DABC в основании лежит равносторонний треугольник ABC, а боковые грани ADB, ADC, BDC — равные равнобедренные треугольники с общей вершиной D (рис. 142).

Выбрать пары равных треугольников

У правильной четырехугольной пирамиды в основании лежит квадрат MNKE, а боковые грани МРЕ, MPN, NPK, ЕРК — равные равнобедренные треугольники с общей вершиной Р (рис. 143).

Выбрать пары равных треугольников

Третий признак равенства треугольников

Вам уже известны два признака равенства треугольников. Рассмотрим еще один.

Теорема (третий признак равенства треугольников). Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Выбрать пары равных треугольников

Доказать: Выбрать пары равных треугольниковАВС = Выбрать пары равных треугольниковА1В1С1.

Доказательство:

Приложим треугольник А1В1С1 к треугольнику ABC так, чтобы у них совместились равные стороны А1С1 и АС, а вершины В1 и В оказались в разных полуплоскостях относительно прямой АС. Треугольник А1В1С1 займет положение треугольника АВ2С. Проведем отрезок ВВ2. Так как АВ2=АВ и В2С = ВС, то треугольники АВВ2 и СВВ2 — равнобедренные. Откуда Выбрать пары равных треугольниковl =Выбрать пары равных треугольников2 и Выбрать пары равных треугольников3 =Выбрать пары равных треугольников4 (как углы при основании равнобедренного треугольника). Тогда Выбрать пары равных треугольниковABC =Выбрать пары равных треугольниковAB2C, и треугольники ABC и АВ2С равны по двум сторонам и углу между ними. Следовательно, Выбрать пары равных треугольниковАВС =Выбрать пары равных треугольниковА1В1С1. Теорема доказана.

Замечание. Чтобы отрезок ВВ2 проходил внутри треугольника ABC, следует прикладывать треугольники большей стороной.

Говорят, что три стороны задают треугольник однозначно.

Итак, теперь вы знаете три признака равенства треугольников. Можно сформулировать и другие признаки равенства треугольников, в которых неизбежно будет присутствовать соответственное равенство каких-то трех элементов двух треугольников. Однако не любые три элемента задают треугольник. Так, например, если три угла одного треугольника соответственно равны трем углам другого треугольника, то такие треугольники не обязательно равны. То же касается треугольников, у которых соответственно равны две стороны и угол, противолежащий одной из этих сторон.

На рисунке 145, а, б вы видите пары таких неравных треугольников.

Выбрать пары равных треугольников

Пример №9

У простой замкнутой ломаной ABCD AB=AD, BC = DC. Доказать, что Выбрать пары равных треугольниковB = Выбрать пары равных треугольниковD и луч АС — биссектриса угла BAD.

Доказательство:

Проведем отрезок АС (рис. 146).

Выбрать пары равных треугольников

Треугольники ABC и ADC равны по 3-му признаку равенства треугольников (AB=AD и BC = DC по условию, сторона АС — общая). Поэтому Выбрать пары равных треугольниковB =Выбрать пары равных треугольниковD и Выбрать пары равных треугольниковBAC =Выбрать пары равных треугольниковDAC как соответствующие в двух равных треугольниках и луч АС — биссектриса угла BAD.

Пример №10

Доказать равенство треугольников по двум сторонам и медиане между ними.

Доказательство:

Выбрать пары равных треугольников

Нужно доказать, что Выбрать пары равных треугольниковАВС =Выбрать пары равных треугольниковА1В1С1. Продлим в каждом треугольнике данную медиану на ее длину так, что MD = ВМ, M1D1=B1M1. Так как Выбрать пары равных треугольниковAMD =Выбрать пары равных треугольниковСМВ по 1-му признаку равенства треугольников (AM = МС, Выбрать пары равных треугольниковAMD =Выбрать пары равных треугольниковCMB как вертикальные, ВМ = MD по построению), то AD = BC. Аналогично Выбрать пары равных треугольниковAXMXDX = Выбрать пары равных треугольниковС1М1В1, откуда A1D1 = B1C1. По условию ВС = В1С1, следовательно, AD=A1D1 и Выбрать пары равных треугольниковABD =Выбрать пары равных треугольниковA1B1D1 по трем сторонам. Тогда Выбрать пары равных треугольниковABM =Выбрать пары равных треугольниковA1B1M1 и Выбрать пары равных треугольниковАВМ =Выбрать пары равных треугольниковА1В1М1 по 1-му признаку равенства треугольников. Отсюда AM =А1М1, АС =А1С1 (так как ВМ и В1М1 — медианы) и Выбрать пары равных треугольниковАВС =Выбрать пары равных треугольниковА1В1С1 по трем сторонам.

Пример №11

Два равных отрезка АВ и CD пересекаются в точке О и AD = BC. Доказать, что ВО = DO.

Доказательство:

Соединим точки В и D отрезком (рис. 148).

Выбрать пары равных треугольников

Треугольники ABD и CDB равны по трем сторонам (сторона BD — общая, AB=CD и AD=СВ по условию). Из равенства треугольников следует, что Выбрать пары равных треугольниковABD =Выбрать пары равных треугольниковCDB. Тогда Выбрать пары равных треугольниковBOD — равнобедренный (по признаку равнобедренного треугольника), откуда ВО=DO.

Серединный перпендикуляр к отрезку

Определение. Серединным перпендикуляром к отрезку называется прямая, перпендикулярная этому отрезку и проходящая через его середину.

Прямая CD — серединный перпендикуляр к отрезку АВ, то есть Выбрать пары равных треугольников(рис. 152).

Выбрать пары равных треугольников
Теорема (о серединном перпендикуляре).

Любая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

В данной теореме два утверждения: прямое и ему обратное. Докажем каждое из этих утверждений отдельно.

1) Дано: Выбрать пары равных треугольников— серединный перпендикуляр к отрезку Выбрать пары равных треугольников(рис. 153).

Выбрать пары равных треугольников

Доказательство:

По определению серединного перпендикуляра Выбрать пары равных треугольниковТогда в треугольнике АКВ высота КМ является медианой. По признаку равнобедренного треугольника Выбрать пары равных треугольниковАКВ — равнобедренный, поэтому КА=КВ.

2) Дано: Выбрать пары равных треугольников(рис. 154).

Выбрать пары равных треугольников

Доказать: Выбрать пары равных треугольниковгде Выбрать пары равных треугольников— серединный перпендикуляр к отрезку АВ.

Доказательство:

Проведем в равнобедренном Выбрать пары равных треугольниковАКВ высоту КМ, которая по свойству равнобедренного треугольника будет и медианой. Получим Выбрать пары равных треугольниковПрямая Выбрать пары равных треугольников, проходящая через высоту КМ, — серединный перпендикуляр к отрезку АВ.

Геометрическим местом точек плоскости (или пространства) называется множество всех точек плоскости (или пространства), обладающих общим свойством.

Из доказанной теоремы следует, что серединный перпендикуляр к отрезку — это геометрическое место точек плоскости, равноудаленных от концов отрезка.

Пример №12

В четырехугольнике (рис. 155) ABCD AB=BC, AD=DC.

Выбрать пары равных треугольников

Доказать, что ACВыбрать пары равных треугольниковBD.

Доказательство:

1-й способ. Из равенства треугольников ABD и CBD по трем сторонам следует, что Выбрать пары равных треугольниковABD =Выбрать пары равных треугольниковCBD. В равнобедренном треугольнике ABC биссектриса ВМ является и высотой. Поэтому ACВыбрать пары равных треугольниковBD.

2-й способ. Точки В и D равноудалены от концов отрезка АС, поэтому они лежат на серединном перпендикуляре к отрезку АС. Так как через две точки проходит единственная прямая, то BD — серединный перпендикуляр к отрезку АС. Отсюда ACВыбрать пары равных треугольниковBD. и AM = МС.

Пример №13 (1-я замечательная точка треугольника).

Доказать, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство:

Пусть два серединных перпендикуляра к сторонам АС и АВ пересекаются в точке О (рис. 156).

Выбрать пары равных треугольников

Точка О лежит на серединном перпендикуляре ОМ, поэтому ОА = ОС. Точка О лежит на серединном перпендикуляре ОК, поэтому ОА = ОВ. Отсюда ОВ = ОС. Поскольку точка О равноудалена от концов отрезка ВС, то она лежит на серединном перпендикуляре к отрезку ВС. Таким образом, третий серединный перпендикуляр пройдет через точку О, и все три серединных перпендикуляра к сторонам треугольника пересекутся в одной точке.

  • 1. Если ножку циркуля поставить в точку О и построить окружность радиусом OA, то она пройдет через все вершины треугольника в силу того, что OA = OB = ОС. Такая окружность называется описанной около треугольника. В данной задаче мы доказали, что центр окружности, описанной около треугольника, лежит в точке пересечения серединных перпендикуляров к его сторонам.
  • 2. Точка пересечения серединных перпендикуляров к сторонам треугольника — это еще одна замечательная точка треугольника помимо уже известных вам точек пересечения биссектрис, медиан, высот.

Напомню:

Три признака равенства треугольников:

  • По двум сторонам и углу между ними.
  • По стороне и двум прилежащим к ней углам.
  • По трем сторонам.
  1. Углы при основании равнобедренного треугольника равны.
  2. Биссектриса равнобедренного треугольника, проведенная из вершины к основанию, является его высотой и медианой.
  3. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
  4. Если высота треугольника является его медианой или биссектрисой, или медиана является его биссектрисой, то треугольник равнобедренный (признаки равнобедренного треугольника).
  5. Любая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
  6. Все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке (1-я замечательная точка треугольника).
Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Признаки равенства прямоугольных треугольников
  • Соотношения в прямоугольном треугольнике
  • Сумма углов треугольника
  • Внешний угол треугольника
  • Задачи на построение циркулем и линейкой
  • Задачи на построение по геометрии
  • Угол — определение, виды, как обозначают с примерами
  • Перпендикулярные прямые в геометрии

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Признаки равенства треугольников

Выбрать пары равных треугольников

О чем эта статья:

Видео:Признаки равенства треугольников. Доказать равенство по рисунку. Найти пары.Скачать

Признаки равенства треугольников. Доказать равенство по рисунку. Найти пары.

Первый признак равенства треугольников

Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.

Давайте рассмотрим три признака равенства треугольников.

Теорема 1. Равенство треугольников по двум сторонам и углу между ними.

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Выбрать пары равных треугольников

При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.

Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.

Значит, происходит совмещение вершин В и В1, С и С1.

Видео:Первый признак равенства треугольников. 7 класс.Скачать

Первый признак равенства треугольников. 7 класс.

Второй признак равенства треугольников

Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Выбрать пары равных треугольников

Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.

Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.

AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.

CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.

Вершина B совпадает с вершиной B1.

Видео:7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников

Третий признак равенства треугольников

Теорема 3. Равенство треугольников по трем сторонам.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Выбрать пары равных треугольников

Доказательство 3 признака равенства треугольников:

Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.

Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.

Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.

  1. Если угол, сторона, противолежащая этому углу, и высота, опущенная на другую сторону, одного треугольника соответственно равны углу, стороне и высоте другого треугольника — такие треугольники равны.
    Выбрать пары равных треугольников
  2. Если две стороны и медиана, заключенная между ними, одного треугольника соответственно равны двум сторонам и медиане другого треугольника — такие треугольники равны.
    Выбрать пары равных треугольников
  3. Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника — такие треугольники тоже равны.
    Выбрать пары равных треугольников
  4. Если две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника — вы уже догадались сами: эти ребята равны.
    Выбрать пары равных треугольников
  5. Два треугольника равны, если сторона, медиана и высота, проведенные к другой стороне, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника.
    Выбрать пары равных треугольников

Как видите, доказать равенство треугольников можно по множеству признаков и десятком способов. Три признака равенства треугольников — основные. Все остальные способы также стоит запомнить, ведь треугольник — только с виду простая фигура.

Видео:Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)

Школе NET

Register

Do you already have an account? Login

Login

Don’t you have an account yet? Register

Newsletter

Submit to our newsletter to receive exclusive stories delivered to you inbox!

  • Главная 
  • Вопросы & Ответы 
  • Вопрос 7660679

Выбрать пары равных треугольников

Суррикат Мими

Видео:Признаки равенства треугольников. Практическая часть. 7 класс.Скачать

Признаки равенства треугольников. Практическая часть. 7 класс.

Выберите пару равных треугольников.

P.S (много баллов даю)

Выбрать пары равных треугольников

Видео:первый признак равенства треугольников. Задачи по готовым чертежам, рисункам. 7 классСкачать

первый признак равенства треугольников. Задачи по готовым чертежам, рисункам. 7 класс

Лучший ответ:

Выбрать пары равных треугольников

Таня Масян

Если еще не поздно: ΔADE и ΔCBF — по двум сторонам и углу между ними. Рассмотрим АВД — он равнобедренный (по условию) ∠ АВД=60 (как вертикальный с ∠ЕВС), тогда ∠А=∠В=60°. АД=АВ=ВС, т.о. ДЕ=BF; BC=AD и углы между ними равны = 60°

📹 Видео

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.Скачать

Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Задачи. Второй признак равенства треугольников. По рисункам. Доказать.Скачать

Задачи. Второй признак равенства треугольников. По рисункам. Доказать.

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

Задачи на доказательство равенства треугольников. Первый признак. Простые.Скачать

Задачи на доказательство равенства треугольников. Первый признак. Простые.

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

7 класс, 20 урок, Третий признак равенства треугольниковСкачать

7 класс, 20 урок, Третий признак равенства треугольников

Равенство Vs подобие треугольников. Вебинар | TutorOnlineСкачать

Равенство Vs подобие треугольников. Вебинар | TutorOnline

Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать

Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | Математика

8 класс, 22 урок, Первый признак подобия треугольниковСкачать

8 класс, 22 урок, Первый признак подобия треугольников

Геометрия 7. Урок 8 - Признаки равенства треугольников.Скачать

Геометрия 7. Урок 8 - Признаки равенства треугольников.
Поделиться или сохранить к себе: