Все свойства остроугольного треугольника

Остроугольный треугольник — виды, свойства и признаки

Одна из центральных тем на уроках геометрии – остроугольный треугольник, составная часть своих более сложных аналогов и иных тригонометрических форм.

Азы изучения точной науки начинаются с рассмотрения уникальной комбинации из трех сторон и острых углов.

Содержание
  1. Виды, признаки и свойства остроугольных треугольников
  2. Равносторонний треугольник
  3. Разносторонний треугольник
  4. Равнобедренный остроугольный треугольник
  5. Равнобедренный тупоугольный треугольник
  6. Остроугольный треугольник
  7. Определение понятия
  8. Характеристики
  9. Линии остроугольного треугольника
  10. Свойства
  11. Что мы узнали?
  12. Треугольник. Формулы определения и свойства треугольников.
  13. Определение треугольника
  14. Классификация треугольников
  15. 1.Разносторонний – треугольник, у которого все стороны имеют разную длину.
  16. 2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β
  17. 3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.
  18. 4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°
  19. 5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.
  20. 6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).
  21. Свойства треугольника
  22. 1.Свойства углов и сторон треугольника.
  23. 2.Теорема синусов.
  24. 3. Теорема косинусов.
  25. 4. Теорема о проекциях
  26. Медианы треугольника
  27. Свойства медиан треугольника:
  28. Формулы медиан треугольника
  29. 🔍 Видео

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Виды, признаки и свойства остроугольных треугольников

Трехсторонние фигуры разделяются на множество подвидов и категорий.

Общая классификация по наибольшему углу делит их на 3 группы:

Все свойства остроугольного треугольника

Они располагают как общими для формы с тремя сторонами характеристиками, так и специфическими признаками.

3 угла, сумма которых равна 180°, (величина каждого меньше 90°) и 3 стороны;

сумма длин любых двух сторон больше оставшейся третьей.

Свойства остроугольной фигуры определяются вспомогательными геометрическими линиями, всегда находящимися внутри него:

1. Биссектрисы, делящие углы пополам, являются центром, вокруг которого можно нарисовать вписанную окружность.

Все свойства остроугольного треугольника

2. Высоты пересекаются в одной точке, образуя ортоцентр.

Все свойства остроугольного треугольника

3. Медианы в точке пересечения пролегают в пропорции 2:1 (2 трети до центра и 1 треть после).

Все свойства остроугольного треугольника

Уникальные особенности зависят от разновидностей фигуры.

Видео:№16 из ЕГЭ2022 и олимпиады. Красивое доказательство свойства ортоцентра остроугольного треугольникаСкачать

№16 из ЕГЭ2022 и олимпиады. Красивое доказательство свойства ортоцентра остроугольного треугольника

Равносторонний треугольник

Все свойства остроугольного треугольника

«Идеальный» правильный треугольник, облегчающий решение задач. Определение, форма и свойства данной геометрической формы исходят из названия — все углы равны 60°, а стороны равны друг другу.

Полное равенство придает и другую особенность: медианы, биссектрисы и высоты полностью совпадают.

Все свойства остроугольного треугольника

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Разносторонний треугольник

Все свойства остроугольного треугольника

Наиболее часто встречаемый на чертежах в геометрии вариант, один из самых трудноразрешимых видов. Разносторонними бывают и прямоугольные, и тупоугольные фигуры.

Уникальных отличий не имеет, только общие:

все параметры имеют разные значения;

совпадений между вспомогательными линиями нет.

Видео:7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

7 класс, 35 урок, Некоторые свойства прямоугольных треугольников

Равнобедренный остроугольный треугольник

Все свойства остроугольного треугольника

Здесь при основании (стороне, не равной остальным) находятся равные друг другу 2 стороны и 2 угла. Выглядит как вытянутый в одну сторону равносторонний треугольник.

проведенная к основанию линия – и биссектриса, и высота, и медиана;

вспомогательные линии из крайних точек при основании совпадают.

Видео:Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

Равнобедренный тупоугольный треугольник

Все свойства остроугольного треугольника

Пусть он и называется равнобедренным, но из-за наличия угла более 90° не является остроугольным и является представителем другой группы.

Начертить его сложнее (рисунок следует начинать с основания и 2 острых углов и уже после создавать тупой), но процесс решения и изучения прост.

Отличие у него одно – точка пересечения двух высот, проведенных от углов при основании, выходит за периметр треугольника. Чтобы ее обозначить, необходимо нарисовать «продолжения» равнобедренных линий. Все остальные свойства совпадают.

В ключевых и фундаментальных разделах математики именно треугольник является основой для доказательства многих теорем и помощью в решении множества задач. Твердое знание его свойств откроет путь к успехам в расчетах, вычислениях, оформлении чертежей и фото в проектных работах.

Видео:Прямоугольный треугольник. Свойства, доказательства.Скачать

Прямоугольный треугольник. Свойства, доказательства.

Остроугольный треугольник

Все свойства остроугольного треугольника Все свойства остроугольного треугольника

Средняя оценка: 4.5

Всего получено оценок: 251.

Средняя оценка: 4.5

Всего получено оценок: 251.

В школьном курсе геометрии изучают разные виды треугольников. В задачах очень часто рассматривают остроугольный треугольник, поэтому стоит особенно пристально изучить свойства этой фигуры.

Все свойства остроугольного треугольника

Видео:Геометрия 7 класс : Свойства прямоугольного треугольникаСкачать

Геометрия 7 класс : Свойства прямоугольного треугольника

Определение понятия

Треугольником называют фигуру, состоящую из трех точек, и трех отрезков их соединяющих. В зависимости от углов треугольник может быть:

  • Прямоугольным, если один из углов равен 90 градусов;
  • Тупоугольный, если один из углов тупой, т.е. больше 90 градусов;
  • Остроугольным, если все углы треугольника острые.

Для решения задач с остроугольными треугольниками часто приходится использовать теорему синусов или косинусов.

Еще в Древней Греции математики изучали треугольники. Именно греки разработали основы современной геометрии, куда входит и множество теорем о треугольниках. Например, автор теоремы Пифагора родом из Древней Греции.

Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Характеристики

В остроугольном треугольнике каждый угол меньше 90 градусов. Но сумма углов в треугольнике всегда равна 180. В любой фигуре вершины обозначают заглавными латинскими буквами.

Одним из элементов треугольника, вместе со сторонами и углами, является внешний угол. Внешний угол это угол, смежный с внутренним углом треугольника.

У любого треугольника 6 внешних углов, по 2 на каждый внутренний. Любой внешний угол остроугольного треугольника всегда будет тупым.

Видео:Некоторые свойства прямоугольного треугольника | Геометрия 7-9 класс #35 | ИнфоурокСкачать

Некоторые свойства прямоугольного треугольника | Геометрия 7-9 класс #35 | Инфоурок

Линии остроугольного треугольника

Остроугольный треугольник обладает рядом свойств.

Медиана геометрической фигуры будет делить сторону, на которую она опущена, пополам. Причем можно провести этот отрезок с любой вершины. Медианы пересекаются в одной точке, и эта точка делит каждую из них в отношении 2:1.

Все свойства остроугольного треугольникаРис. 1. Медианы в остроугольном треугольнике

Известно, что если провести три высоты в остроугольном треугольнике, то они будут пересекаться в одной точке, которую называют ортоцентром. Эти отрезки опускают под прямым углом к противоположным сторонам. Высоты в остроугольном треугольнике разделяют эту фигуру на прямоугольные треугольники.

Все свойства остроугольного треугольникаРис. 2. Высоты в остроугольном треугольнике

Биссектрисы в остроугольном треугольнике не только делят углы пополам. Эти отрезки пересекаются в точке, которая является центром вписанной окружности.

Также биссектриса разделяет сторону остроугольного треугольника на две части, которые пропорциональны соответствующим боковым сторонам. Данное утверждение нужно запомнить, чтобы решать некоторые задачи.

Все свойства остроугольного треугольникаРис. 3. Биссектрисы в остроугольном треугольнике

Видео:Виды треугольниковСкачать

Виды треугольников

Свойства

Если суммировать числовые значения любых двух сторон остроугольного треугольника, то обязательно получим цифру, которая будет больше третьего отрезка данной геометрической фигуры.

Средняя линия в остроугольном треугольнике параллельна одной из сторон данной фигуры и равна ее половине.

Все свойства остроугольного треугольника

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Что мы узнали?

В остроугольном треугольнике каждый угол меньше 90 градусов. Общая сумма углов здесь также равняется 180 градусов. Нельзя забывать о характерных линиях треугольника. Поскольку с их помощью легко вычислить стороны данной треугольной фигуры или центр определенной окружности. А если в условиях задач по геометрии указаны углы, то можно воспользоваться тригонометрическими функциями.

Видео:Свойства прямоугольного треугольника - 7 класс геометрияСкачать

Свойства прямоугольного треугольника - 7 класс геометрия

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Видео:Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать

Свойства прямоугольного треугольника. Практическая часть.  7 класс.

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Все свойства остроугольного треугольника

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Видео:35. Некоторые свойства прямоугольных треугольниковСкачать

35. Некоторые свойства прямоугольных треугольников

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

Все свойства остроугольного треугольника

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

Все свойства остроугольного треугольника

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

Все свойства остроугольного треугольника

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

Все свойства остроугольного треугольника

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

Все свойства остроугольного треугольника

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Все свойства остроугольного треугольника

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Свойства треугольника

1.Свойства углов и сторон треугольника.

Все свойства остроугольного треугольника

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c
sin αsin βsin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Видео:Все свойства и формулы прямоугольного треугольникаСкачать

Все свойства и формулы прямоугольного треугольника

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Все свойства остроугольного треугольника

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO=BO=CO=2
ODOEOF1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Все свойства остроугольного треугольника

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

🔍 Видео

Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать

Свойство медианы в прямоугольном треугольнике. 8 класс.

СВОЙСТВА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА §18 геометрия 7 классСкачать

СВОЙСТВА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА §18 геометрия 7 класс

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника
Поделиться или сохранить к себе: