Все ли равнобедренные треугольники подобны

Все ли равнобедренные треугольники подобны

Все ли равнобедренные треугольники подобны

Видео:Все равнобедренные треугольники подобны. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Все равнобедренные треугольники подобны. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Источник задания: Решение 2555. ОГЭ 2018 Математика, И.В. Ященко. 36 вариантов.

Задание 20. Какое из следующих утверждений верно?

1) Все равнобедренные треугольники подобны.

2) Существует прямоугольник, диагонали которого взаимно перпендикулярны.

3) Сумма углов прямоугольного треугольника равна 90 градусам.

1) Нет, из условий подобия следует, что все стороны и углы треугольников пропорционально больше или меньше друг друга.

2) Да, диагонали взаимно перпендикулярны у квадрата, это частный случай прямоугольника.

3) Нет, сумма углов в любом треугольнике 180 градусов.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Три признака подобия треугольников

Теорема 1. Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого.

Пусть в треугольниках ABC и А’В’С ∠A = ∠А’ ∠В = ∠B’ (в подобных треугольниках вершины соответственно равных углов часто обозначают одинаковыми буквами).

Доказать, что (Delta)ABС (sim) (Delta)А’В’С (рис. 367).

Все ли равнобедренные треугольники подобны

Прежде всего отметим, что из равенства двух углов данных треугольников следует, что и третьи углы их равны, т. е. ∠C = ∠С’.

Отложим от вершины В, например, на стороне AB треугольника ABC отрезок ВМ, равный отрезку А’В’. Из точки М проведём прямую MN || АС. Мы получили (Delta)MBN, который подобен (Delta)ABC. Но (Delta)MBN = (Delta)А’В’С’, так как ∠В = ∠В’ по условию теоремы; сторона MB = A’B’ по построению; ∠BMN = ∠A’ (∠BMN и ∠А’ порознь равны одному и тому же ∠А).

Если (Delta)MBN (sim) (Delta)AВС, то (Delta)А’В’С’ (sim) (Delta)ABC. Эта теорема выражает 1-й признак подобия треугольников.

Следствия. 1. Равносторонние треугольники подобны.

2. Равнобедренные треугольники подобны, если они имеют по равному углу при вершине или при основании.

3. Два прямоугольных треугольника подобны, если она имеют по равному острому углу.

4. Равнобедренные прямоугольные треугольники подобны.

Теорема 2 . Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, лежащие между ними, равны.

Пусть в треугольниках ABC и А’В’С’ (frac = frac) и ∠В = ∠В’

Требуется доказать, что (Delta)ABC (sim) (Delta)А’В’С’ (рис. 368).

Все ли равнобедренные треугольники подобны

Для доказательства отложим, например, на стороне AB треугольника ABC от вершины В отрезок ВМ, равный отрезку А’В’. Через точку М проведём прямую MN || АС. Полученный треугольник MBN подобен треугольнику ABC.

Докажем, что (Delta)MBN = (Delta)А’В’С’. В этих треугольниках ∠В = ∠В’ по условию теоремы, MB = А’В’ по построению. Чтобы убедиться в равенстве сторон BN и В’С, составим пропорцию AB /MB = BC /BN (она вытекает из параллельности АС и MN) и сравним её с пропорцией, которая дана в условии теоремы: (frac = frac). В этих двух пропорциях имеется по три равных члена, следовательно, равны и четвёртые их члены,

т. е. В’С’ = BN. Отсюда следует равенство треугольников MBN и А’В’С’.

Так как (Delta)MBN (sim) (Delta)А’В’С’, то, следовательно, и (Delta)А’В’С’ (sim) (Delta)ABС.

Эта теорема выражает 2-й признак подобия треугольников.

Следствие. Прямоугольные треугольники подобны, если катеты одного из них пропорциональны катетам другого.

Теорема 3. Два треугольника подобны, если три стороны одного треугольника пропорциональны трём сторонам другого треугольника.

Пусть в треугольниках ABC и А’В’С’ (frac = frac = frac) (рис. 369).

Требуется доказать, что (Delta)ABC (sim) (Delta)А’В’С’

Все ли равнобедренные треугольники подобны

Для доказательства отложим на стороне AB треугольника ABC от вершины В отрезок BM = А’В’. Из точки M проведём прямую MN || АС. Полученный треугольник MBN подобен треугольнику ABC. Следовательно, (frac = frac = frac).

Докажем, что (Delta)MBN = (Delta)А’В’С’. Для доказательства сравним две пропорции

(frac = frac) и (frac = frac).
В этих пропорциях имеется по три равных члена, следовательно, равны и четвёртые их члены, т.е. BN = В’С’.

Сравним ещё две пропорции: (frac = frac) и (frac = frac) . В этих пропорциях также имеется по три равных члена, следовательно, равны и четвёртые члены их, т. е. MN =А’С’.

Оказалось, что три стороны (Delta)BMN равны трём сторонам (Delta)А’В’С’, а именно:

MB = А’В’, BN = В’С’ и MN = А’С’.

Следовательно, (Delta)MBN = (Delta)А’В’С’, а (Delta)ABC (sim) (Delta)А’В’С’.

Эта теорема выражает 3-й признак подобия треугольников.

Равнобедренные треугольники подобны

Выясним, в каких случаях равнобедренные треугольники подобны.

Признаки подобия равнобедренных треугольников

1) Если угол между боковыми сторонами одного равнобедренного треугольника равен углу между боковыми сторонами другого равнобедренного треугольника, то такие треугольники подобны.

Дано : ∆ ABC, AB=BC,

Все ли равнобедренные треугольники подобны

Все ли равнобедренные треугольники подобны

Из равенства углов при вершине равнобедренных треугольников следует равенство их углов при основаниях:

Все ли равнобедренные треугольники подобны

Следовательно, треугольники ABC и A1B1C1 подобны по двум углам.

Что и требовалось доказать .

Все ли равнобедренные треугольники подобны2) Если угол между основанием и боковой стороной одного равнобедренного треугольника равен углу между между основанием и боковой стороной другого равнобедренного треугольника, то такие треугольники подобны.

Дано : ∆ ABC, AB=BC,

Все ли равнобедренные треугольники подобны

Все ли равнобедренные треугольники подобны

Так как углы при основании равнобедренного треугольника равны, в треугольнике ABC ∠A=∠C, в треугольнике A1B1C1∠A1=∠C1. Следовательно, треугольники ABC и A1B1C1 подобны по двум углам.

Что и требовалось доказать .

Все ли равнобедренные треугольники подобны3) Если основание и боковая сторона одного равнобедренного треугольника пропорциональны основанию и боковой стороне другого равнобедренного треугольника, то такие треугольники подобны.

Дано : ∆ ABC, AB=BC,

Все ли равнобедренные треугольники подобны

Все ли равнобедренные треугольники подобны

Все ли равнобедренные треугольники подобны

Все ли равнобедренные треугольники подобны

Следовательно, треугольники ABC и A1B1C1 подобны по трём сторонам.

🌟 Видео

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

№553. Подобны ли равнобедренные треугольники, если они имеют: а) по равному острому углуСкачать

№553. Подобны ли равнобедренные треугольники, если они имеют: а) по равному острому углу

Все равносторонние треугольники подобны. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Все равносторонние треугольники подобны. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Свойства равнобедренного треугольника #огэ #математика #shortsСкачать

Свойства равнобедренного треугольника #огэ #математика #shorts

Равнобедренный треугольникСкачать

Равнобедренный треугольник

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Виды треугольниковСкачать

Виды треугольников

Подобные треугольники с нуля до ОГЭ | Математика ОГЭ 2023 | УмскулСкачать

Подобные треугольники с нуля до ОГЭ | Математика ОГЭ 2023 | Умскул

Как распознать равнобедренный треугольник? #shortsСкачать

Как распознать равнобедренный треугольник? #shorts

Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать

Подобие треугольников (ч.2) | Математика | TutorOnline

✓ Свойства и признаки равнобедренного треугольника | Ботай со мной #008 | Борис ТрушинСкачать

✓ Свойства и признаки равнобедренного треугольника | Ботай со мной #008 | Борис Трушин

ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образованиеСкачать

ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образование

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts
Поделиться или сохранить к себе: