Вокруг любого треугольника можно описать окружность да или нет

Вокруг любого треугольника можно описать окружность да или нет

Какие из данных утверждений верны? Запишите их номера.

1) Вокруг любого треугольника можно описать окружность.

2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

3) Площадь трапеции равна произведению средней линии на высоту.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Вокруг любого треугольника можно описать окружность» — верно, по свойству треугольника.

2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно; из всех параллелограммов только в квадрате диагонали равны и перпендикулярны одновременно.

3) «Площадь трапеции равна произведению средней линии на высоту» — верно, по свойству трапеции.

Видео:ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikajСкачать

ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikaj

Какие из данных утверждений верны?

1) Вокруг любого треугольника можно описать окружность.

2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

3) Площадь трапеции равна произведению средней линии на высоту.

4) В тупоугольном треугольнике все углы тупые.

5) В любом параллелограмме диагонали точкой пересечения делятся пополам.

6) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Вокруг любого треугольника можно описать окружность да или нетСерединный перпендикуляр к отрезку
Вокруг любого треугольника можно описать окружность да или нетОкружность описанная около треугольника
Вокруг любого треугольника можно описать окружность да или нетСвойства описанной около треугольника окружности. Теорема синусов
Вокруг любого треугольника можно описать окружность да или нетДоказательства теорем о свойствах описанной около треугольника окружности

Вокруг любого треугольника можно описать окружность да или нет

Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Вокруг любого треугольника можно описать окружность да или нет

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Вокруг любого треугольника можно описать окружность да или нет

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Вокруг любого треугольника можно описать окружность да или нет

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Вокруг любого треугольника можно описать окружность да или нет

Вокруг любого треугольника можно описать окружность да или нет

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Вокруг любого треугольника можно описать окружность да или нет

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Вокруг любого треугольника можно описать окружность да или нет

Вокруг любого треугольника можно описать окружность да или нет

Полученное противоречие и завершает доказательство теоремы 2

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Вокруг любого треугольника можно описать окружность да или нет

Видео:Описанная и вписанная окружности треугольника - 7 класс геометрияСкачать

Описанная и вписанная окружности треугольника - 7 класс геометрия

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Вокруг любого треугольника можно описать окружность да или нет,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Вокруг любого треугольника можно описать окружность да или нет

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Вокруг любого треугольника можно описать окружность да или нетВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаВокруг любого треугольника можно описать окружность да или нетОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиВокруг любого треугольника можно описать окружность да или нетЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиВокруг любого треугольника можно описать окружность да или нетЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовВокруг любого треугольника можно описать окружность да или нет
Площадь треугольникаВокруг любого треугольника можно описать окружность да или нет
Радиус описанной окружностиВокруг любого треугольника можно описать окружность да или нет
Серединные перпендикуляры к сторонам треугольника
Вокруг любого треугольника можно описать окружность да или нет

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаВокруг любого треугольника можно описать окружность да или нет

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиВокруг любого треугольника можно описать окружность да или нет

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиВокруг любого треугольника можно описать окружность да или нет

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиВокруг любого треугольника можно описать окружность да или нет

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовВокруг любого треугольника можно описать окружность да или нет

Для любого треугольника справедливы равенства (теорема синусов):

Вокруг любого треугольника можно описать окружность да или нет,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаВокруг любого треугольника можно описать окружность да или нет

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиВокруг любого треугольника можно описать окружность да или нет

Для любого треугольника справедливо равенство:

Вокруг любого треугольника можно описать окружность да или нет

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Вокруг любого треугольника можно описать окружность да или нет

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Вокруг любого треугольника можно описать окружность да или нет

Вокруг любого треугольника можно описать окружность да или нет.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Вокруг любого треугольника можно описать окружность да или нет

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

🎥 Видео

8 класс, 39 урок, Описанная окружностьСкачать

8 класс, 39 урок, Описанная окружность

8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Вписанная и описанная окружность (Часть 1)Скачать

Вписанная и описанная окружность (Часть 1)

Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать

Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023

Окружность || Часть 4 || Треугольник, вписанный в окружностьСкачать

Окружность || Часть 4 || Треугольник, вписанный в окружность

ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТСкачать

ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТ

Урок по теме ОПИСАННАЯ ОКРУЖНОСТЬ 8 классСкачать

Урок по теме ОПИСАННАЯ ОКРУЖНОСТЬ 8 класс

Школково. Вебинар 3. Разбор четырех задач №16 из ЕГЭ по математикеСкачать

Школково. Вебинар 3. Разбор четырех задач №16 из ЕГЭ по математике

Эти задания были на ОГЭ по математике 2022 | Математика ОГЭ 2022 | УмскулСкачать

Эти задания были на ОГЭ по математике 2022 | Математика ОГЭ 2022 | Умскул

Построение окружности по трём точкам.Скачать

Построение окружности по трём точкам.

Доказать, что точки лежат на одной окружностиСкачать

Доказать, что точки лежат на одной окружности

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)
Поделиться или сохранить к себе: