Вид треугольника по косинусу

Как определить вид треугольника

Онлайн калькулятор поможет узнать по сторонам, является ли треугольник прямоугольным, равнобедренным, равносторонним или разносторонним.

Как определить, что треугольник прямоугольный: по Теорема Пифагорасумма квадратов длин катетов равна квадрату длины гипотенузы c 2 = a 2 + b 2
Как определить, что треугольник равнобедренный: один из признаков равнобедренного треугольника — две стороны равны.
Как определить, что треугольник равносторонний: все стороны равны.

Принято выделять три типа треугольников:
тупоугольные — один из углов более 90 градусов,
прямоугольные — один из угол равен 90 градусов,
остроугольные — все углы менее 90 градусов.
Это классификация по типу углов.

Содержание
  1. Теорема косинусов и синусов
  2. Формулировка и доказательство теоремы косинусов
  3. Формулировка теоремы для каждой из сторон треугольника
  4. Косинусы углов треугольника
  5. Определение угла с помощью косинуса
  6. Рассмотрение пределов изменения cos α и sin α
  7. Примеры решения задач
  8. Треугольник. Формулы и свойства треугольников.
  9. Типы треугольников
  10. По величине углов
  11. По числу равных сторон
  12. Вершины углы и стороны треугольника
  13. Свойства углов и сторон треугольника
  14. Теорема синусов
  15. Теорема косинусов
  16. Теорема о проекциях
  17. Формулы для вычисления длин сторон треугольника
  18. Медианы треугольника
  19. Свойства медиан треугольника:
  20. Формулы медиан треугольника
  21. Биссектрисы треугольника
  22. Свойства биссектрис треугольника:
  23. Формулы биссектрис треугольника
  24. Высоты треугольника
  25. Свойства высот треугольника
  26. Формулы высот треугольника
  27. Окружность вписанная в треугольник
  28. Свойства окружности вписанной в треугольник
  29. Формулы радиуса окружности вписанной в треугольник
  30. Окружность описанная вокруг треугольника
  31. Свойства окружности описанной вокруг треугольника
  32. Формулы радиуса окружности описанной вокруг треугольника
  33. Связь между вписанной и описанной окружностями треугольника
  34. Средняя линия треугольника
  35. Свойства средней линии треугольника
  36. Периметр треугольника
  37. Формулы площади треугольника
  38. Формула Герона
  39. Равенство треугольников
  40. Признаки равенства треугольников
  41. Первый признак равенства треугольников — по двум сторонам и углу между ними
  42. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  43. Третий признак равенства треугольников — по трем сторонам
  44. Подобие треугольников
  45. Признаки подобия треугольников
  46. Первый признак подобия треугольников
  47. Второй признак подобия треугольников
  48. Третий признак подобия треугольников

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Теорема косинусов и синусов

Вид треугольника по косинусу

О чем эта статья:

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Вид треугольника по косинусу

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 — 2bc cos α

Вид треугольника по косинусу

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

Вид треугольника по косинусу

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:


Вид треугольника по косинусу

  • Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 — a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Вид треугольника по косинусу

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 — (b × cos α) 2
  • h 2 = a 2 — (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
  • a 2 = b 2 + c 2 — 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 — 2ac × cos β;
  • c 2 = a 2 + b 2 — 2ab × cos γ.

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 — 2bc cos α

b 2 = c 2 + a 2 — 2ca cos β

c 2 = a 2 + b 2 — 2ab cos γ

Вид треугольника по косинусу

Теорема косинусов может быть использована для любого вида треугольника.

Видео:9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Вид треугольника по косинусу

Вид треугольника по косинусу

Вид треугольника по косинусу

Вид треугольника по косинусу

Вид треугольника по косинусу

Видео:Определить вид треугольника по сторонам. 9 классСкачать

Определить вид треугольника по сторонам. 9 класс

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Вид треугольника по косинусу

Видео:9 класс, 14 урок, Теорема косинусовСкачать

9 класс, 14 урок, Теорема косинусов

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Видео:ОПРЕДЕЛИТЬ ВИД ТРЕУГОЛЬНИКА по его сторонамСкачать

ОПРЕДЕЛИТЬ ВИД ТРЕУГОЛЬНИКА по его сторонам

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

Вид треугольника по косинусу

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Вид треугольника по косинусу

Из треугольника СМВ по теореме косинусов найдём СМ:
Вид треугольника по косинусу

Вид треугольника по косинусу

Вид треугольника по косинусу

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

Вид треугольника по косинусу

  • Если c 2 2 + b 2 , то ∠C — острый.

Вид треугольника по косинусу

Видео:Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

Треугольник. Формулы и свойства треугольников.

Видео:ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образованиеСкачать

ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образование

Типы треугольников

По величине углов

Вид треугольника по косинусу

Вид треугольника по косинусу

Вид треугольника по косинусу

По числу равных сторон

Вид треугольника по косинусу

Вид треугольника по косинусу

Вид треугольника по косинусу

Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Вид треугольника по косинусу

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

Медианы треугольника

Вид треугольника по косинусу

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений ДолжкевичСкачать

Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений Должкевич

Биссектрисы треугольника

Вид треугольника по косинусу

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Решение задачи с применением теоремы синусовСкачать

Решение задачи с применением теоремы синусов

Высоты треугольника

Вид треугольника по косинусу

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Геометрия 9 класс (Урок№16 - Теорема косинусов.)Скачать

Геометрия 9 класс (Урок№16 - Теорема косинусов.)

Окружность вписанная в треугольник

Вид треугольника по косинусу

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Зачем нужны синусы и косинусы?Скачать

Зачем нужны синусы и косинусы?

Окружность описанная вокруг треугольника

Вид треугольника по косинусу

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:9 класс, 13 урок, Теорема синусовСкачать

9 класс, 13 урок, Теорема синусов

Связь между вписанной и описанной окружностями треугольника

Видео:Виды треугольниковСкачать

Виды треугольников

Средняя линия треугольника

Свойства средней линии треугольника

Вид треугольника по косинусу

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрияСкачать

СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрия

Периметр треугольника

Вид треугольника по косинусу

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | ТригонометрияСкачать

СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | Тригонометрия

Формулы площади треугольника

Вид треугольника по косинусу

Формула Герона

S =a · b · с
4R

Видео:№1048. Найдите косинусы углов треугольника с вершинами А (2; 8),Скачать

№1048. Найдите косинусы углов треугольника с вершинами А (2; 8),

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

Вид треугольника по косинусу

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Поделиться или сохранить к себе: