Вертикальные углы доказательство равенства треугольников

Вертикальные углы. Свойства вертикальных углов

Определение 1. Вертикальными углами называются два угла, у которых стороны одного угла являются продолжениями сторон другого угла.

Вертикальные углы доказательство равенства треугольников

На Рис.1 углы AOB и COD вертикальные. Вертикальные также углы AOD и BOC.

Видео:7 класс, 11 урок, Смежные и вертикальные углыСкачать

7 класс, 11 урок, Смежные и вертикальные углы

Свойства вертикальных углов

1. Вертикальные углы равны.

2. Две пересекающие прямые образуют две пары вертикальных углов.

Доказательство пункта 1. Поскольку 1, 3 и 2, 3 смежные углы, то имеем

Вертикальные углы доказательство равенства треугольников, Вертикальные углы доказательство равенства треугольников
Вертикальные углы доказательство равенства треугольников, Вертикальные углы доказательство равенства треугольников

Следовательно Вертикальные углы доказательство равенства треугольников. Аналогично доказывается, что Вертикальные углы доказательство равенства треугольников.

Видео:Вертикальные углы равны (доказательство)Скачать

Вертикальные углы равны (доказательство)

Задачи и решения

Задание 1. Угол 1 равен 32°. Найти углы 2, 3, 4 (Рис.2).

Вертикальные углы доказательство равенства треугольников

Решение. Так как углы 1 и 2 вертикальны, то Вертикальные углы доказательство равенства треугольников. Углы 1 и 4 смежные. Следовательно Вертикальные углы доказательство равенства треугольников. Тогда

Вертикальные углы доказательство равенства треугольниковВертикальные углы доказательство равенства треугольников.

Углы 3 и 4 вертикальные. Тогда Вертикальные углы доказательство равенства треугольников

Ответ. Вертикальные углы доказательство равенства треугольников.

Задание 2. При пересечении двух прямых образовались четыре угла. Сумма двух углов равна 220°. Найти все углы.

Решение. Из образованных четырех углов любые две или смежные, или вертикальные. Поскольку в нашей задаче сумма двух углов равна 220°, то эти углы вертикальные (так как сумма смежных углов равна 180°). Тогда каждый из этих углов равен 220°:2=110°. Смежный по отношению угла 110° , будет угол 180°-110°=70°. Следовательно остальные два угла равны 70°. Отметим, что сумма всех четырех углов равен 360°:

Вертикальные углы доказательство равенства треугольников.

Ответ. Вертикальные углы доказательство равенства треугольников.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Как доказать, что углы треугольников равны

Как доказать, что углы треугольников равны? Рассмотрим возможные варианты.

Углы треугольников могут быть равны в следующих случаях:

1) Угол — общий (один и тот же угол принадлежит одновременно двум различным треугольникам).

3) Углы при основании равнобедренного треугольника равны.

4) Если дана биссектриса треугольника, то исходный угол разделен ею на два равных угла.

5) Если дана высота треугольника, то она образует два прямых (а значит, равных) угла.

6) Угол, смежный с прямым, есть прямой угол (а значит, они равны между собой).

7) Углы, смежные с равными, равны между собой.

8) Соответствующие углы равных треугольников равны между собой.

9) Если к равным углам прибавить равные углы, то получим равные углы.

10) Если из равных углов вычесть равные углы, то получим равные углы.

11) Внутренние накрест лежащие углы при параллельных прямых и секущей равны между собой.

12) Соответственные углы при параллельных прямых и секущей равны между собой.

13) Углы равны по условию.

14) Углы равны по построению.

15) Углы равны по доказанному.

Видео:7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников

5 Comments

На вопрос вы так и не ответили. «Как доказать, что углы равны?» а не «В каких случаях углы равны?». Как-то так; информация не полная, а так все отлично.

Равенство углов следует из равенства треугольников. Значит, в большинстве задач, чтобы доказать, что углы равны, нужно доказать равенство треугольников.
Еще можно доказать, что два угла являются углами при основании равнобедренного треугольника, соответственными или внутренними накрест лежащими углами при параллельных прямых и т.д. — об этом сказано выше.

А если в «моём» случае не подходит?

Значит, искать «свой», подходящий вариант.

Спасибо, очень много вариантов! Я уж думала никогда не найду ответ, а тут белая куча ответов! Спасибо!

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Признаки равенства треугольников

Вертикальные углы доказательство равенства треугольников

О чем эта статья:

Видео:Вертикальные углы. 7 класс.Скачать

Вертикальные углы. 7 класс.

Первый признак равенства треугольников

Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.

Давайте рассмотрим три признака равенства треугольников.

Теорема 1. Равенство треугольников по двум сторонам и углу между ними.

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Вертикальные углы доказательство равенства треугольников

При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.

Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.

Значит, происходит совмещение вершин В и В1, С и С1.

Видео:Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Второй признак равенства треугольников

Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Вертикальные углы доказательство равенства треугольников

Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.

Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.

AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.

CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.

Вершина B совпадает с вершиной B1.

Видео:SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

Третий признак равенства треугольников

Теорема 3. Равенство треугольников по трем сторонам.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Вертикальные углы доказательство равенства треугольников

Доказательство 3 признака равенства треугольников:

Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.

Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.

Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.

  1. Если угол, сторона, противолежащая этому углу, и высота, опущенная на другую сторону, одного треугольника соответственно равны углу, стороне и высоте другого треугольника — такие треугольники равны.
    Вертикальные углы доказательство равенства треугольников
  2. Если две стороны и медиана, заключенная между ними, одного треугольника соответственно равны двум сторонам и медиане другого треугольника — такие треугольники равны.
    Вертикальные углы доказательство равенства треугольников
  3. Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника — такие треугольники тоже равны.
    Вертикальные углы доказательство равенства треугольников
  4. Если две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника — вы уже догадались сами: эти ребята равны.
    Вертикальные углы доказательство равенства треугольников
  5. Два треугольника равны, если сторона, медиана и высота, проведенные к другой стороне, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника.
    Вертикальные углы доказательство равенства треугольников

Как видите, доказать равенство треугольников можно по множеству признаков и десятком способов. Три признака равенства треугольников — основные. Все остальные способы также стоит запомнить, ведь треугольник — только с виду простая фигура.

📺 Видео

Вертикальные углы равны. ДоказательствоСкачать

Вертикальные углы равны. Доказательство

Геометрия 7. Теорема. Вертикальные углы равны.Скачать

Геометрия 7. Теорема. Вертикальные углы равны.

Задача на доказательства равенства угловСкачать

Задача на доказательства равенства углов

Теорема о вертикальных углахСкачать

Теорема о вертикальных углах

Первый признак равенства треугольников. 7 класс.Скачать

Первый признак равенства треугольников. 7 класс.

Вертикальные углы. Теорема и свойстваСкачать

Вертикальные углы. Теорема и свойства

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)

Геометрия 7 кл. Решение задач на признаки равенства треугольников. Слова и фразы – помощники. Урок 4Скачать

Геометрия 7 кл. Решение задач на признаки равенства треугольников. Слова и фразы – помощники. Урок 4

Вертикальные углы равны доказательствоСкачать

Вертикальные углы равны доказательство

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.Скачать

Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.

СМЕЖНЫЕ ВЕРТИКАЛЬНЫЕ УГЛЫ геометрия 7 класс. Теорема, доказательствоСкачать

СМЕЖНЫЕ ВЕРТИКАЛЬНЫЕ УГЛЫ геометрия 7 класс. Теорема, доказательство
Поделиться или сохранить к себе: