Вершина центрального угла находится на окружности или в центре

Центральные и вписанные углы

Вершина центрального угла находится на окружности или в центре

О чем эта статья:

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Вершина центрального угла находится на окружности или в центре

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Вершина центрального угла находится на окружности или в центре

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Вершина центрального угла находится на окружности или в центре

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Вершина центрального угла находится на окружности или в центре

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Вершина центрального угла находится на окружности или в центре

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Вершина центрального угла находится на окружности или в центре

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Вершина центрального угла находится на окружности или в центре

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Вершина центрального угла находится на окружности или в центре

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Вершина центрального угла находится на окружности или в центре

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Вершина центрального угла находится на окружности или в центре

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Вершина центрального угла находится на окружности или в центре

ㄥBAC + ㄥBDC = 180°

Видео:Центральный угол в окружностиСкачать

Центральный угол в окружности

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Вершина центрального угла находится на окружности или в центре

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Вершина центрального угла находится на окружности или в центре

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Вершина центрального угла находится на окружности или в центре

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Окружность. Центральный и вписанный угол

Центральный угол — это угол, вершина которого находится в центре окружности.
Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.

На рисунке — центральные и вписанные углы, а также их важнейшие свойства.

Вершина центрального угла находится на окружности или в центре
Итак, величина центрального угла равна угловой величине дуги, на которую он опирается.
Значит, центральный угол величиной в градусов будет опираться на дугу, равную , то есть круга. Центральный угол, равный , опирается на дугу в градусов, то есть на шестую часть круга.

Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.

Также для решения задач нам понадобится понятие «хорда».

Вершина центрального угла находится на окружности или в центре
Равные центральные углы опираются на равные хорды.

1 . Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, — прямой.

2 . Центральный угол на больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Пусть центральный угол равен , а вписанный угол, опирающийся на ту же дугу, равен .

Вершина центрального угла находится на окружности или в центре

Мы знаем, что .
Отсюда ,
.

Ты нашел то, что искал? Поделись с друзьями!

3 . Радиус окружности равен . Найдите величину тупого вписанного угла, опирающегося на хорду, равную . Ответ дайте в градусах.

Вершина центрального угла находится на окружности или в центре

Пусть хорда равна . Тупой вписанный угол, опирающийся на эту хорду, обозначим .
В треугольнике стороны и равны , сторона равна . Нам уже встречались такие треугольники. Очевидно, что треугольник — прямоугольный и равнобедренный, то есть угол равен .
Тогда дуга равна , а дуга равна .
Вписанный угол опирается на дугу и равен половине угловой величины этой дуги, то есть .

4 . Хорда делит окружность на две части, градусные величины которых относятся как . Под каким углом видна эта хорда из точки , принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Вершина центрального угла находится на окружности или в центре

Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки ?»
Представьте, что вы сидите в точке и вам необходимо видеть всё, что происходит на хорде . Так, как будто хорда — это экран в кинотеатре 🙂
Очевидно, что найти нужно угол .
Сумма двух дуг, на которые хорда делит окружность, равна , то есть

Отсюда , и тогда вписанный угол опирается на дугу, равную .
Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол равен .

Видео:Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.Скачать

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.

Углы, связанные с окружностью

Вершина центрального угла находится на окружности или в центреВписанные и центральные углы
Вершина центрального угла находится на окружности или в центреУглы, образованные хордами, касательными и секущими
Вершина центрального угла находится на окружности или в центреДоказательства теорем об углах, связанных с окружностью

Видео:Углы с вершиной внутри и вне окружности.Скачать

Углы с вершиной внутри и вне окружности.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Вершина центрального угла находится на окружности или в центре

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Вершина центрального угла находится на окружности или в центре

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Вписанные и центральные углыСкачать

Вписанные и центральные углы

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголВершина центрального угла находится на окружности или в центре
Вписанный уголВершина центрального угла находится на окружности или в центреВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголВершина центрального угла находится на окружности или в центреВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголВершина центрального угла находится на окружности или в центреДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголВершина центрального угла находится на окружности или в центреВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаВершина центрального угла находится на окружности или в центре

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вершина центрального угла находится на окружности или в центре

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вершина центрального угла находится на окружности или в центре

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Вершина центрального угла находится на окружности или в центре

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вершина центрального угла находится на окружности или в центре

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Вершина центрального угла находится на окружности или в центре

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Вершина центрального угла находится на окружности или в центре

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиВершина центрального угла находится на окружности или в центреВершина центрального угла находится на окружности или в центре
Угол, образованный секущими, которые пересекаются вне кругаВершина центрального угла находится на окружности или в центреВершина центрального угла находится на окружности или в центре
Угол, образованный касательной и хордой, проходящей через точку касанияВершина центрального угла находится на окружности или в центреВершина центрального угла находится на окружности или в центре
Угол, образованный касательной и секущейВершина центрального угла находится на окружности или в центреВершина центрального угла находится на окружности или в центре
Угол, образованный двумя касательными к окружностиВершина центрального угла находится на окружности или в центреВершина центрального угла находится на окружности или в центре

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Угол, образованный пересекающимися хордами хордами
Вершина центрального угла находится на окружности или в центре
Формула: Вершина центрального угла находится на окружности или в центре
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Вершина центрального угла находится на окружности или в центре

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Вершина центрального угла находится на окружности или в центре
Формула: Вершина центрального угла находится на окружности или в центре
Угол, образованный касательной и секущей касательной и секущей
Формула: Вершина центрального угла находится на окружности или в центре

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Вершина центрального угла находится на окружности или в центре

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Вершина центрального угла находится на окружности или в центре

В этом случае справедливы равенства

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Вершина центрального угла находится на окружности или в центре

В этом случае справедливы равенства

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Вершина центрального угла находится на окружности или в центре

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Вершина центрального угла находится на окружности или в центре

Вершина центрального угла находится на окружности или в центре

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

🔍 Видео

Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Вписанный угол равен половине центрального углаСкачать

Вписанный угол равен половине центрального угла

Решение задач на тему центральные и вписанные углы.Скачать

Решение задач на тему центральные и вписанные углы.

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 классСкачать

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 класс

Центральные и вписанные углы. Геометрия 8клСкачать

Центральные и вписанные углы. Геометрия 8кл

Центральный угол (определение, виды углов и решение задач). Геометрия 8-9 классСкачать

Центральный угол (определение, виды углов и решение задач). Геометрия 8-9 класс

ВПИСАННЫЕ И ЦЕНТРАЛЬНЫЕ УГЛЫ | МАТЕМАТИКА ОГЭ №16 | ОКРУЖНОСТЬСкачать

ВПИСАННЫЕ И ЦЕНТРАЛЬНЫЕ УГЛЫ | МАТЕМАТИКА ОГЭ №16 | ОКРУЖНОСТЬ
Поделиться или сохранить к себе: