Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C1 и B1 соответственно.
а) Докажите, что треугольник ABC подобен треугольнику AB1C1.
б) Найдите радиус данной окружности, если ∠A = 45°, B1C1 = 6 и площадь треугольника AB1C1 в восемь раз меньше площади четырёхугольника BCB1C1.
Четырёхугольник BCB1C1 вписан в окружность, поэтому
Следовательно, треугольники ABC и AB1C1 подобны по двум углам.
б) Площадь треугольника AB1C1 в восемь раз меньше площади четырёхугольника BCB1C1, поэтому площадь треугольника ABC в девять раз больше площади треугольника AB1C1 и коэффициент подобия этих треугольников равен 3. Пусть тогда Найдём BB1 по теореме косинусов:
Теперь по теореме синусов из треугольника ABB1 получаем:
Но поскольку синусы смежных углов равны. Получаем
Теперь находим радиус окружности, описанной около треугольника BB1C:
Ответ:
Критерии оценивания выполнения задания | Баллы |
---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, Видео:Геометрия В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит черезСкачать Задание №188Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать УсловиеВ треугольнике ABC окружность проходит через точки B и C и пересекает стороны AB и AC в точках M и N соответственно. Отрезок MN касается окружности, вписанной в треугольник ABC . а) Докажите, что bigtriangleup ABC подобен bigtriangleup ANM . б) Найдите MN , если AB=7, AC=8, BC=9 . Видео:В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. окружность проходит через точки C,DСкачать Решениеа) Окружность с центром в точке O_1 описана около четырехугольника BMNC , значит, angle BCN+angle BMN =180^ , angle BMN=180^-angle BCN . angle AMN+angle BMN=180^ , как смежные, angle BMN=180^-angle AMN. Отсюда angle BCN=angle AMN . Имеем в треугольниках ABC и ANM : angle A — общий, angle ACB=angle NCB=angle AMN, значит, bigtriangleup ABC подобен bigtriangleup ANM по первому признаку подобия, что требовалось доказать. Окружность с центром в точке O вписана в bigtriangleup ABC, значит AF=AE, BE=BP, CP=CF , как отрезки касательных, проведенных к окружности c центром O_1 из точек A, B и C соответственно. Пусть AF=AE=x, тогда BE=BP=7-x, CP=CF=8-x, BP+CP=BC, 7-x+8-x=9, x=3, AF=AE=3 . Обозначим MK=t, NK=p, тогда ME=MK=t, NF=NK=p как отрезки касательных, проведенных к окружности с центром O из точек M и N соответственно. Получим AM=AE-ME=3-t, AN=AF-NF=3-p, MN=MK+NK=t+p . Периметр bigtriangleup AMN равен AM+AN+MN=3-t+3-p+t+p=6. Периметры подобных треугольников относятся так же как и их стороны, поэтому frac=frac, MN=frac=2,25 Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать В треугольнике окружность проходит через точкиБАЗА ЗАДАНИЙ Задание № 16. Планиметрия с доказательством. 1. Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D. 2. К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно. 3. Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD. 4. В треугольнике ABC точки A 1 , B 1 , C 1 — середины сторон BC, AC и A B соответственно, AH— высота, ∠BAC = 60°, ∠BCA = 45°. 5. Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно. 6. Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P. 7. Две окружности касаются внутренним образом в точке K, причём меньшая проходит через центр большей. Хорда MN большей окружности касается меньшей в точке C. Хорды KM и KN пересекают меньшую окружность в точках A и B соответственно, а отрезки KC и AB пересекаются в точке L. 8. Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. 9. Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и второй раз пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D. 10. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны. 11. В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно. 12. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠BAC = ∠OBC+∠OCB. 13. Точки P, Q, W делят стороны выпуклого четырёхугольника ABCD в отношении AP:PB = CQ:QB = CW:WD = 3:4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ— острый. 14. Окружность проходит через вершины В и С треугольника АВС и пересекает АВ и АС в точках C 1 , B 1 соответственно. 15. Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD. 16. В прямоугольном треугольнике АВС с прямым углом С точки М и N – середины катетов АС и ВС соответственно, СН – высота. 17. В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M. 18. В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно. 19. Окружность, вписанная в треугольник KLM, касается сторон KL, LM, MK в точках A, B и C соответственно. б) Найдите отношение LB:BM, если известно, что KC:CM = 3:2 и ∠ MKL = 60. 20. Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD. 21. Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K. 22. В прямоугольном треугольнике ABC точки M и N – середины гипотенузы AB и катета BC соответственно. Биссектриса ∠ BAC пересекает прямую MN в точке L 23. Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части. 24. На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P. 25. Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K. 26. В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая – боковых сторон, меньшего основания BC и первой окружности. 27. В трапецию ABCD с основаниями AD и BC вписана окружность с центром O. 28. Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17. 💥 ВидеоГеометрия Окружность проходит через вершины А и С треугольника АВС и пересекает его стороны АВ и ВССкачать Так периметр еще никто не находил! Задача про треугольник и окружностиСкачать Замечательные точки треуг-ка. 8 класс.Скачать Окружность проходит через вершины A и C треугольника ABC ... ОГЭ, геометрия, часть 11Скачать Три точки, задающие окружностьСкачать №968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать Разбор Задачи №16 из работы Статград от 29 января 2020 (Запад)Скачать Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать #207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать Треугольник и окружность #shortsСкачать №204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр ОСкачать 7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать Уравнение окружности (1)Скачать Три окружностиСкачать Задание 24 ОГЭ по математике #3Скачать Задание 26 Свойство касательной и секущей Подобные треугольникиСкачать |