В формуле s r2 радиус окружности это

Как найти радиус окружности

В формуле s r2 радиус окружности это

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Содержание
  1. Основные понятия
  2. Формула радиуса окружности
  3. Если известна площадь круга
  4. Если известна длина
  5. Если известен диаметр окружности
  6. Если известна диагональ вписанного прямоугольника
  7. Если известна сторона описанного квадрата
  8. Если известны стороны и площадь вписанного треугольника
  9. Если известна площадь и полупериметр описанного треугольника
  10. Если известна площадь сектора и его центральный угол
  11. Если известна сторона вписанного правильного многоугольника
  12. Скачать онлайн таблицу
  13. Нахождение радиуса круга: формула и примеры
  14. Формулы вычисления радиуса круга
  15. 1. Через длину окружности/периметр круга
  16. 2. Через площадь круга
  17. Примеры задач
  18. Радиус — что это такое и как найти радиус окружности
  19. Через длину стороны
  20. Найти радиус круга, зная окружность
  21. Радиус и диаметр
  22. Вычисление радиуса
  23. Если известен диаметр
  24. Если известна длина окружности круга
  25. Если известна площадь круга
  26. Способ расчета радиуса круга:
  27. Через сторону описанного квадрата
  28. Как посчитать радиус зная длину окружности
  29. Формула
  30. Свойства радиуса
  31. По площади сектора и центральному углу
  32. Площадь сегмента
  33. Формулы для площади круга и его частей
  34. Центральный угол, вписанный угол и их свойства
  35. Связанные определения
  36. Примеры задач
  37. Длина дуги
  38. Уравнение окружности
  39. Углы между двумя хордами
  40. Через площадь и полупериметр описанного треугольника
  41. Основные свойства касательных к окружности
  42. Обобщения
  43. Через диагональ вписанного прямоугольника
  44. Площадь круга, онлайн расчет
  45. Вместо заключения

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Видео:Формулы для радиуса окружности #shortsСкачать

Формулы для радиуса окружности #shorts

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать

КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 класс

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Видео:РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Видео:Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Видео:КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Формулы вычисления радиуса круга

В формуле s r2 радиус окружности это

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

В формуле s r2 радиус окружности это

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

В формуле s r2 радиус окружности это

S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

S = π R 2

Видео:Длина окружности. Площадь круга, 6 классСкачать

Длина окружности. Площадь круга, 6 класс

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
В формуле s r2 радиус окружности это

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
В формуле s r2 радиус окружности это

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Радиус — что это такое и как найти радиус окружности

Видео:Окружность. Как найти Радиус и ДиаметрСкачать

Окружность. Как найти Радиус и Диаметр

Через длину стороны

В формуле s r2 радиус окружности это

Формула для нахождения длины окружности через радиус:

, где r — радиус окружности.

Видео:Радиус вписанной окружности, формулу через площадь и полупериметрСкачать

Радиус вписанной окружности, формулу через площадь и полупериметр

Найти радиус круга, зная окружность

В формуле s r2 радиус окружности этоВ формуле s r2 радиус окружности это
Окружность круга PРезультат

В формуле s r2 радиус окружности это

Видео:Почему площадь круга равна pi•R²Скачать

Почему площадь круга равна pi•R²

Радиус и диаметр

Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

В формуле s r2 радиус окружности это

Обозначается диаметр также первой буквой своего слова – D или d.

Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

Длина диаметра равна удвоенной длине радиуса.

В формуле s r2 радиус окружности это

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Вычисление радиуса

Радиус можно посчитать разными способами.

Если известен диаметр

Этот способ самый простой. Диаметр равен двум радиусам. Поэтому радиус будет высчитываться по формуле r=d/2.

Если известна длина окружности круга

Также несложно будет узнать радиус, если известна длина окружности круга. Формула для расчета длины окружности C=2πr, в которой C является длиной окружности, π=3,14, а r — это как раз искомый радиус.

Преобразовав данную формулу, получим: r=C/2π. Вообще, число «Пи» в формуле — это постоянное значение, округленное до 3,14. На самом деле «Пи» выглядит так:

В формуле s r2 радиус окружности это

Означает данное значение отношение длины окружности к диаметру той же окружности.

Если известна площадь круга

Формула площади круга выглядит так: A= π(r²). Эту формулу можно преобразовать в формулу радиуса:

В формуле s r2 радиус окружности это

В ней A — это площадь круга, число «Пи» мы уже знаем, оно равно округленно 3,14, а r — это и есть искомое значение радиуса.

Как найти радиус круга, все школьники учат на геометрии. Взрослые, конечно, со временем забывают эти формулы. Но, прочитав данную статью, радиус круга может найти каждый: и взрослый, и ребенок.

Способ расчета радиуса круга:

В формуле s r2 радиус окружности это

Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
Формула радиуса круга: В формуле s r2 радиус окружности это
где P – длина окружности, pi – число π, равное примерно 3.14

В формуле s r2 радиус окружности это

Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
Формула радиуса круга: В формуле s r2 радиус окружности это
где S – площадь круга, pi – число π, равное примерно 3.14

Через сторону описанного квадрата

Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.

В формуле s r2 радиус окружности это

  • r — искомый радиус окружности.
  • a — сторона описанного квадрата.

Как посчитать радиус зная длину окружности

Чему равен радиус (r) если длина окружности C?

Формула

r = C / , где π ≈ 3.14

Свойства радиуса

В отношении радиуса действуют несколько важных правил:

  1. Радиус составляет половину диаметра. Это мы продемонстрировали только что.
  2. У окружности может быть сколько угодно радиусов. Но все они будут равны по длине между собой.

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

Радиус, который перпендикулярен хорде, делит ее на две равные части.

Напомним, хордой называется любой отрезок, который проходит через две точки на поверхности окружности, но не через центр. Этим она принципиально отличается от диаметра.

В формуле s r2 радиус окружности это

По площади сектора и центральному углу

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

  • Например, если площадь сектора равна 50 см 2 , а центральный угол равен 120 градусов, формула запишется следующим образом: .

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла .

В формуле s r2 радиус окружности это

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах , получаем

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

В случае, когда величина α выражена в в радианах , получаем

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это

Формулы для площади круга и его частей

В формуле s r2 радиус окружности это,

где R – радиус круга, D – диаметр круга

В формуле s r2 радиус окружности это,

если величина угла α выражена в радианах

В формуле s r2 радиус окружности это,

если величина угла α выражена в градусах

В формуле s r2 радиус окружности это,

если величина угла α выражена в радианах

В формуле s r2 радиус окружности это,

если величина угла α выражена в градусах

Числовая характеристикаРисунокФормула
Площадь кругаВ формуле s r2 радиус окружности это
Площадь сектораВ формуле s r2 радиус окружности это
Площадь сегментаВ формуле s r2 радиус окружности это
Площадь круга
В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это,

где R – радиус круга, D – диаметр круга

Площадь сектора В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это,

если величина угла α выражена в радианах

В формуле s r2 радиус окружности это,

если величина угла α выражена в градусах

Площадь сегмента В формуле s r2 радиус окружности это

В формуле s r2 радиус окружности это,

если величина угла α выражена в радианах

В формуле s r2 радиус окружности это,

если величина угла α выражена в градусах

Центральный угол, вписанный угол и их свойства

Связанные определения

  • Центральный угол в окружности — это угол , образованный двумя радиусами.
  • Радиус кривизны кривой — это радиус окружности, имеющей с этой кривой касание второго порядка.

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
В формуле s r2 радиус окружности это

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
В формуле s r2 радиус окружности это

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла .

В формуле s r2 радиус окружности это

В случае, когда величина α выражена в градусах , справедлива пропорция

В формуле s r2 радиус окружности это

из которой вытекает равенство:

В формуле s r2 радиус окружности это

В случае, когда величина α выражена в радианах , справедлива пропорция

В формуле s r2 радиус окружности это

из которой вытекает равенство:

В формуле s r2 радиус окружности это

Уравнение окружности

r 2 = ( x – a ) 2 + ( y – b ) 2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами ( a, b ) в декартовой системе координат:

<x = a + r cos t
y = b + r sin t

Углы между двумя хордами

Случай 1: два секущие пересекаются внутри окружности.

В формуле s r2 радиус окружности это

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются. На рисунке дуга AB и дуга CD равны 60° и 50° тогда углы 1 и 2 равны Случай 2: две секущие пересекаются вне окружности.
В формуле s r2 радиус окружности это

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

Через площадь и полупериметр описанного треугольника

Разделите площадь описанного треугольника на его полупериметр.

  • r — искомый радиус окружности.
  • S — площадь треугольника.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Основные свойства касательных к окружности

В формуле s r2 радиус окружности это

3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:

Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:

Обобщения

Радиусом множества , лежащего в метрическом пространстве с метрикой , называется величина . Например, радиус n-размерного гиперкуба со стороной s равен

Через диагональ вписанного прямоугольника

Диагональ прямоугольника является диаметром окружности, в которую он вписан. А диаметр, как мы уже вспомнили, в два раза больше радиуса. Поэтому достаточно разделить диагональ на два.

В формуле s r2 радиус окружности это

  • R — искомый радиус окружности.
  • d — диагональ вписанного прямоугольника. Напомним, она делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Поэтому, если диагональ неизвестна, её можно найти через соседние стороны прямоугольника с помощью теоремы Пифагора.
  • a, b — стороны вписанного прямоугольника.

Площадь круга, онлайн расчет

Как найти площадь круга по формуле через радиус либо диаметр круга.Площадь круга, онлайн расчет

Вместо заключения

Чтобы еще больше понять, насколько важно понятие РАДИУС, вспомните инструмент, с помощью которого можно начертить окружность. Это циркуль и выглядит он вот так.

В формуле s r2 радиус окружности это

Пользоваться им просто. Ножка с острым концом ставится в центр будущей окружности. А ножка с грифелем прочерчивает линию. А расстояние, на котором они будут друг от друга, и есть РАДИУС.

Поделиться или сохранить к себе: