ГБОУ СОШ № 000 с углубленным изучением английского языка Адмиралтейского района Санкт-Петербурга
Решение тригонометрических неравенств с помощью единичной окружности
Тригонометрические неравенства одна из самых сложных тем в школьном курсе математики. При решении простейших тригонометрических неравенств удобно использовать тригонометрическую окружность для того, чтобы наиболее наглядно представить решения неравенства и верно записать множества решений данного неравенства.
Цель данной разработки — сформировать у школьников умения использовать тригонометрический круг при решении простейших неравенств вида sin x > a, sin x a, cosx , называются тригонометрическими неравенствами.
Решить тригонометрическое неравенство — это значит, найти множество значений неизвестных, входящих в неравенство, при которых неравенство выполняется.
Тригонометрические неравенства можно решать с помощью графиков функций y = sin x, y = cos x, y = tg x, y= ctg x или с помощью единичной окружности.
Решение тригонометрических неравенств, сводится, как правило, к решению простейших неравенств вида: sin x>a, sin xa, sin xa, sin x
Алгоритм решения тригонометрических неравенств
с помощью единичной окружности.
1) На оси ординат (абсцисс) отметить точку a и провести прямую y = a (x = a), перпендикулярную соответствующей оси.
2) Отметить на окружности дугу, состоящую из точек окружности, удовлетворяющих данному неравенству (эти точки расположены по одну сторону от построенной прямой).
3) Записать числовой промежуток, точки которого заполняют отмеченную дугу, и к обеим частям неравенства прибавить период функции ( для y = sin x и y = cos x ).
Решение простейших неравенств вида sin x>a, sin xa, sin xa, sin x
На единичной окружности проводим прямую y = , которая пересекает окружность в точках A и B.
Все значения y на промежутке NM больше , все точки дуги AMB удовлетворяют данному неравенству. При всех углах поворота, больших , но меньших , sin x будет принимать значения больше (но не больше единицы).
Таким образом, решением неравенства будут все значения на интервале , т. е. a, cos xa, cos xa, cos x
Видео:10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать
Неравенство круга
Решите систему неравенств
Решение:
Данную систему можно записать следующим образом:
Первое неравенство системы задает круг радиуса 5 с центром в точке А(2; -1), второе неравенство — круг радиуса 5 с центром в точке В(-4; 7) (смотри рисунок). Расстояние между центрами этих кругов равно
и, следовательно, равно сумме их радиусов. Значит, круги касаются и координаты точки касания С — единственное решение данной системы неравенств. Точка касания С является серединой отрезка АВ, и ее координаты можно найти как среднее арифметическое соответствующих координат точек А и В, то есть С(-1; 3).
Иные задачи с уравнениями и неравенствами кругов и окружностей здесь.
Видео:Как решать тригонометрические неравенства?Скачать
Уравнение окружности.
Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.
В формулировке окружности упоминается расстояние между точкой окружности и центром.
Формула расстояния между двумя точками М1(х1; у1) и М2(х2; у2) имеет вид:
,
Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.
Отметим произвольную точку М(х; у) на этой окружности.
.
Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.
Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .
Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:
В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):
📺 Видео
9 класс, 6 урок, Уравнение окружностиСкачать
Уравнение окружности (1)Скачать
3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
Отбор корней по окружностиСкачать
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
УРАВНЕНИЕ ОКРУЖНОСТИСкачать
Как решать неравенства? Часть 1| МатематикаСкачать
Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать
ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать
Решение системы неравенств с двумя переменными. 9 класс.Скачать
Уравнение окружности | Геометрия 7-9 класс #90| ИнфоурокСкачать
Неравенства с двумя переменными. 9 класс.Скачать
Неравенства с двумя переменными. Алгебра, 9 классСкачать
Математика это не ИсламСкачать
ТРИГОНОМЕТРИЧЕСКИЕ НЕРАВЕНСТВА 10 класс тригонометрияСкачать
ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
№969. Напишите уравнение окружности с диаметром MN, если: а) М (-3; 5),Скачать