Угол при вершине треугольника

Угол при вершине равнобедренного треугольника

Как найти угол при вершине равнобедренного треугольника?

Каким может быть угол при вершине равнобедренного треугольника?

Найти угол при вершине равнобедренного треугольника, если угол при его основании равен α.

Угол при вершине треугольникаДано: ∆ ABC,

∠A=∠C (как углы при основании равнобедренного треугольника).

Значит, α+∠B+α=180º, откуда ∠B=180º-2α.

1) Угол при вершине равнобедренного треугольника равен 180º минус удвоенный угол при его основании.

2) Чем больше угол при основании равнобедренного треугольника, тем меньше угол при его вершине.

3) Если угол при основании α=45º, угол при вершине равнобедренного треугольника — прямой, так как

Если угол при основании больше 45º, угол при вершине — острый, так как

при α>45º произведение 2α>90º, откуда 180º-2α 90º.

Содержание
  1. Внешний угол треугольника
  2. Сумма внешних углов
  3. Треугольник. Формулы и свойства треугольников.
  4. Типы треугольников
  5. По величине углов
  6. По числу равных сторон
  7. Вершины углы и стороны треугольника
  8. Свойства углов и сторон треугольника
  9. Теорема синусов
  10. Теорема косинусов
  11. Теорема о проекциях
  12. Формулы для вычисления длин сторон треугольника
  13. Медианы треугольника
  14. Свойства медиан треугольника:
  15. Формулы медиан треугольника
  16. Биссектрисы треугольника
  17. Свойства биссектрис треугольника:
  18. Формулы биссектрис треугольника
  19. Высоты треугольника
  20. Свойства высот треугольника
  21. Формулы высот треугольника
  22. Окружность вписанная в треугольник
  23. Свойства окружности вписанной в треугольник
  24. Формулы радиуса окружности вписанной в треугольник
  25. Окружность описанная вокруг треугольника
  26. Свойства окружности описанной вокруг треугольника
  27. Формулы радиуса окружности описанной вокруг треугольника
  28. Связь между вписанной и описанной окружностями треугольника
  29. Средняя линия треугольника
  30. Свойства средней линии треугольника
  31. Периметр треугольника
  32. Формулы площади треугольника
  33. Формула Герона
  34. Равенство треугольников
  35. Признаки равенства треугольников
  36. Первый признак равенства треугольников — по двум сторонам и углу между ними
  37. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  38. Третий признак равенства треугольников — по трем сторонам
  39. Подобие треугольников
  40. Признаки подобия треугольников
  41. Первый признак подобия треугольников
  42. Второй признак подобия треугольников
  43. Третий признак подобия треугольников
  44. 🔍 Видео

Видео:угол при вершине противолежащей основанию равнобедренного треугольника равен 150Скачать

угол при вершине противолежащей основанию равнобедренного треугольника равен 150

Внешний угол треугольника

Внешний угол треугольника — это угол, смежный с любым из внутренних углов треугольника.

Угол при вершине треугольника

При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:

Угол при вершине треугольника

Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны.

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Угол при вершине треугольника

Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:

Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:

Из этого следует, что

Сократив обе части полученного равенства на одно и тоже число (∠4), получим:

Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.

Видео:Вариант 28, № 4. Равнобедренный треугольник. Угол при вершинеСкачать

Вариант 28, № 4. Равнобедренный треугольник. Угол при вершине

Сумма внешних углов

Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°

Рассмотрим треугольник ABC:

Угол при вершине треугольника

Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:

(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°.

Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:

∠1 + ∠2 + ∠3 = 540° — (∠4 + ∠5 + ∠6) = 540° — 180° = 360°.

Видео:№257. В прямоугольном треугольнике ABC с прямым углом С внешний угол при вершине А равен 120°Скачать

№257. В прямоугольном треугольнике ABC с прямым углом С внешний угол при вершине А равен 120°

Треугольник. Формулы и свойства треугольников.

Видео:Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

Типы треугольников

По величине углов

Угол при вершине треугольника

Угол при вершине треугольника

Угол при вершине треугольника

По числу равных сторон

Угол при вершине треугольника

Угол при вершине треугольника

Угол при вершине треугольника

Видео:Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Угол при вершине треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:1839 угол при вершине противолежащей основанию равнобедренного треугольникаСкачать

1839 угол при вершине противолежащей основанию равнобедренного треугольника

Медианы треугольника

Угол при вершине треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Внешний угол треугольникаСкачать

Внешний угол треугольника

Биссектрисы треугольника

Угол при вершине треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:1819 угол при вершине противолежащей основанию равнобедренного треугольника равен 150Скачать

1819 угол при вершине противолежащей основанию равнобедренного треугольника равен 150

Высоты треугольника

Угол при вершине треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Задача 6 №27590 ЕГЭ по математике. Урок 58Скачать

Задача 6 №27590 ЕГЭ по математике. Урок 58

Окружность вписанная в треугольник

Угол при вершине треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:№234. Один из внешних углов равнобедренного треугольника равен 115°. Найдите углы треугольника.Скачать

№234. Один из внешних углов равнобедренного треугольника равен 115°. Найдите углы треугольника.

Окружность описанная вокруг треугольника

Угол при вершине треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Задача 6 №27589 ЕГЭ по математике. Урок 57Скачать

Задача 6 №27589 ЕГЭ по математике. Урок 57

Связь между вписанной и описанной окружностями треугольника

Видео:Внешний угол треугольникаСкачать

Внешний угол треугольника

Средняя линия треугольника

Свойства средней линии треугольника

Угол при вершине треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Периметр треугольника

Угол при вершине треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:№233. Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника,Скачать

№233. Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника,

Формулы площади треугольника

Угол при вершине треугольника

Формула Герона

S =a · b · с
4R

Видео:#117 РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК // УГОЛ ПРИ ВЕРШИНЕСкачать

#117  РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК // УГОЛ ПРИ ВЕРШИНЕ

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углыСкачать

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углы

Подобие треугольников

Угол при вершине треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

🔍 Видео

Найдите угол при вершине равнобедренного треугольника ★ Задача от Атанасяна #299Скачать

Найдите угол при вершине равнобедренного треугольника ★ Задача от Атанасяна #299

№1049. Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )Скачать

№1049. Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )

В треугольнике АВС угол А равен 40, внешний угол при вершине В равен 102Скачать

В треугольнике АВС угол А равен 40, внешний угол при вершине В равен 102

Геометрия Угол при вершине равнобедренного треугольника равен β, высота, проведенная к боковойСкачать

Геометрия Угол при вершине равнобедренного треугольника равен β, высота, проведенная к боковой
Поделиться или сохранить к себе: