Тупоугольный треугольник формулы сторон

Тупоугольный треугольник
Содержание
  1. Что такое тупоугольный треугольник
  2. Элементы тупоугольного треугольника
  3. Формулы площади тупоугольного треугольника
  4. Пример решения задачи
  5. Все формулы для треугольника
  6. 1. Как найти неизвестную сторону треугольника
  7. 2. Как узнать сторону прямоугольного треугольника
  8. 3. Формулы сторон равнобедренного треугольника
  9. 4. Найти длину высоты треугольника
  10. Треугольник. Формулы и свойства треугольников.
  11. Типы треугольников
  12. По величине углов
  13. По числу равных сторон
  14. Вершины углы и стороны треугольника
  15. Свойства углов и сторон треугольника
  16. Теорема синусов
  17. Теорема косинусов
  18. Теорема о проекциях
  19. Формулы для вычисления длин сторон треугольника
  20. Медианы треугольника
  21. Свойства медиан треугольника:
  22. Формулы медиан треугольника
  23. Биссектрисы треугольника
  24. Свойства биссектрис треугольника:
  25. Формулы биссектрис треугольника
  26. Высоты треугольника
  27. Свойства высот треугольника
  28. Формулы высот треугольника
  29. Окружность вписанная в треугольник
  30. Свойства окружности вписанной в треугольник
  31. Формулы радиуса окружности вписанной в треугольник
  32. Окружность описанная вокруг треугольника
  33. Свойства окружности описанной вокруг треугольника
  34. Формулы радиуса окружности описанной вокруг треугольника
  35. Связь между вписанной и описанной окружностями треугольника
  36. Средняя линия треугольника
  37. Свойства средней линии треугольника
  38. Периметр треугольника
  39. Формулы площади треугольника
  40. Формула Герона
  41. Равенство треугольников
  42. Признаки равенства треугольников
  43. Первый признак равенства треугольников — по двум сторонам и углу между ними
  44. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  45. Третий признак равенства треугольников — по трем сторонам
  46. Подобие треугольников
  47. Признаки подобия треугольников
  48. Первый признак подобия треугольников
  49. Второй признак подобия треугольников
  50. Третий признак подобия треугольников

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Что такое тупоугольный треугольник

Тупоугольный треугольник — геометрическая фигура на плоскости, которая представляет собой треугольник, один из углов которого является тупым, то есть больше 90º.

Такой треугольник не может быть прямоугольным и равносторонним, но может быть равнобедренным.

Сумма углов треугольника равна 180º. Именно поэтому только один из них может быть больше 90º, два других всегда острые. Это единственная особенность данной фигуры. Подход к решению задач с такой фигурой не отличается от решения задач с треугольниками других типов.

Видео:7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольники

Элементы тупоугольного треугольника

Помимо сторон и углов, тупоугольный треугольник имеет следующие элементы:

  1. Внешний угол — тот, который смежен с внутренним, всего их шесть, по два на один внутренний. Внешний угол тупого всегда будет острым, острого — тупым.
  2. Медиана — отрезок, который соединяет вершину треугольника с противолежащей стороной и делит ее пополам. Все медианы пересекаются друг с другом в одной точке (центроиде). Эта точка делит медианы в соотношении 2:1, считая от вершины.
  3. Высота — перпендикуляр, который проведен из высоты треугольника на противоположную сторону. В тупоугольном треугольнике может лежать за пределами фигуры.
  4. Биссектриса — прямая, делящая угол пополам. Делит противоположную сторону на отрезки, которые пропорциональны прилежащим сторонам фигуры. Точка, которая является пересечением биссектрис, также является центром вписанной окружности.

Видео:Тупоугольный треугольник для острого умаСкачать

Тупоугольный треугольник для острого  ума

Формулы площади тупоугольного треугольника

Для нахождения площади, периметра и других показателей тупоугольного треугольника используются те же формулы, что и для вычисления любого произвольного треугольника.

Площадь данной фигуры можно найти при помощи следующих формул:

S = ½ * x * h , где х — сторона;

S = √ p * ( p — x ) * ( p — y ) * ( p — z ) ,

p — полупериметр, p = ( x + y + z ) / 2

S = x * y * z / 4 * R , R — радиус описанной окружности;

S = p * r , p — полупериметр, r — радиус вписанной окружности.

Видео:32. Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

32. Остроугольный, прямоугольный и тупоугольный треугольники

Пример решения задачи

Найти площадь тупоугольного треугольника, у которого стороны равны x=9, y=5, z=6.

Для решения задачи стоит использовать формулу площади с полупериметром.

p = ( x + y + z ) / 2 , p = ( 9 + 5 + 6 ) / 2 = 20 / 2 = 10 .

S = √ p * ( p — x ) * ( p — y ) * ( p — z ) , S = √ 10 * ( 10 — 9 ) * ( 10 — 5 ) * ( 10 — 6 ) = √ 10 * 1 * 5 * 4 = √ 200 = 10 √ 2

Видео:Треугольники: остро-, тупо- и прямоугольныеСкачать

Треугольники: остро-, тупо- и прямоугольные

Все формулы для треугольника

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Тупоугольный треугольник формулы сторон

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Тупоугольный треугольник формулы сторон

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Тупоугольный треугольник формулы сторон

Видео:Виды треугольниковСкачать

Виды треугольников

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Тупоугольный треугольник формулы сторон

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Тупоугольный треугольник формулы сторон

Формулы для катета, ( b ):

Тупоугольный треугольник формулы сторон

Формулы для гипотенузы, ( c ):

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

Формулы сторон по теореме Пифагора, ( a , b ):

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Тупоугольный треугольник формулы сторон

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

Формулы длины равных сторон , (a):

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Тупоугольный треугольник формулы сторон H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Тупоугольный треугольник формулы сторон

Формула длины высоты через сторону и угол, ( H ):

Тупоугольный треугольник формулы сторон

Формула длины высоты через сторону и площадь, ( H ):

Тупоугольный треугольник формулы сторон

Формула длины высоты через стороны и радиус, ( H ):

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Треугольник. Формулы и свойства треугольников.

Видео:Остроугольный , тупоугольный и прямоугольный треугольники | Геометрия 7-9 класс #32 | ИнфоурокСкачать

Остроугольный , тупоугольный  и прямоугольный треугольники  | Геометрия 7-9 класс #32 | Инфоурок

Типы треугольников

По величине углов

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

По числу равных сторон

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

Тупоугольный треугольник формулы сторон

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Тупоугольный треугольник формулы сторон

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Медианы треугольника

Тупоугольный треугольник формулы сторон

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Биссектрисы треугольника

Тупоугольный треугольник формулы сторон

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Высоты треугольника

Тупоугольный треугольник формулы сторон

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Окружность вписанная в треугольник

Тупоугольный треугольник формулы сторон

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Геометрия Установите, остроугольным, прямоугольным или тупоугольным является треугольник стороныСкачать

Геометрия Установите, остроугольным, прямоугольным или тупоугольным является треугольник стороны

Окружность описанная вокруг треугольника

Тупоугольный треугольник формулы сторон

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Связь между вписанной и описанной окружностями треугольника

Видео:Формулы для медианы треугольникаСкачать

Формулы для медианы треугольника

Средняя линия треугольника

Свойства средней линии треугольника

Тупоугольный треугольник формулы сторон

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Периметр треугольника

Тупоугольный треугольник формулы сторон

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Тупоугольный треугольник формулы сторон

Формула Герона

S =a · b · с
4R

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

Тупоугольный треугольник формулы сторон

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Поделиться или сохранить к себе: