Центральный угол окружности свойства центрального угла

Углы, связанные с окружностью
Центральный угол окружности свойства центрального углаВписанные и центральные углы
Центральный угол окружности свойства центрального углаУглы, образованные хордами, касательными и секущими
Центральный угол окружности свойства центрального углаДоказательства теорем об углах, связанных с окружностью

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Центральный угол окружности свойства центрального угла

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Центральный угол окружности свойства центрального угла

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголЦентральный угол окружности свойства центрального угла
Вписанный уголЦентральный угол окружности свойства центрального углаВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголЦентральный угол окружности свойства центрального углаВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголЦентральный угол окружности свойства центрального углаДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголЦентральный угол окружности свойства центрального углаВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаЦентральный угол окружности свойства центрального угла

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Центральный угол окружности свойства центрального угла

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Центральный угол окружности свойства центрального угла

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Центральный угол окружности свойства центрального угла

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Центральный угол окружности свойства центрального угла

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Центральный угол окружности свойства центрального угла

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Центральный угол окружности свойства центрального угла

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиЦентральный угол окружности свойства центрального углаЦентральный угол окружности свойства центрального угла
Угол, образованный секущими, которые пересекаются вне кругаЦентральный угол окружности свойства центрального углаЦентральный угол окружности свойства центрального угла
Угол, образованный касательной и хордой, проходящей через точку касанияЦентральный угол окружности свойства центрального углаЦентральный угол окружности свойства центрального угла
Угол, образованный касательной и секущейЦентральный угол окружности свойства центрального углаЦентральный угол окружности свойства центрального угла
Угол, образованный двумя касательными к окружностиЦентральный угол окружности свойства центрального углаЦентральный угол окружности свойства центрального угла

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Угол, образованный пересекающимися хордами хордами
Центральный угол окружности свойства центрального угла
Формула: Центральный угол окружности свойства центрального угла
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Центральный угол окружности свойства центрального угла

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Центральный угол окружности свойства центрального угла
Формула: Центральный угол окружности свойства центрального угла
Угол, образованный касательной и секущей касательной и секущей
Формула: Центральный угол окружности свойства центрального угла

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Центральный угол окружности свойства центрального угла

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Центральный угол в окружностиСкачать

Центральный угол в окружности

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Центральный угол окружности свойства центрального угла

В этом случае справедливы равенства

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Центральный угол окружности свойства центрального угла

В этом случае справедливы равенства

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Центральный угол окружности свойства центрального угла

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Центральный угол окружности свойства центрального угла

Центральный угол окружности свойства центрального угла

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Центральные и вписанные углы

Центральный угол окружности свойства центрального угла

О чем эта статья:

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Центральный угол окружности свойства центрального угла

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Центральный угол окружности свойства центрального угла

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Вписанный угол равен половине центрального углаСкачать

Вписанный угол равен половине центрального угла

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Центральный угол окружности свойства центрального угла

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Центральный угол окружности свойства центрального угла

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Центральный угол окружности свойства центрального угла

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Центральный угол окружности свойства центрального угла

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Центральный угол окружности свойства центрального угла

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Центральный угол окружности свойства центрального угла

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Центральный угол окружности свойства центрального угла

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Центральный угол окружности свойства центрального угла

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Центральный угол окружности свойства центрального угла

ㄥBAC + ㄥBDC = 180°

Видео:ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Центральный угол окружности свойства центрального угла

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Центральный угол окружности свойства центрального угла

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Центральный угол окружности свойства центрального угла

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. НайдитеСкачать

№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите

Окружность. Центральный и вписанный угол

Центральный угол — это угол, вершина которого находится в центре окружности.
Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.

На рисунке — центральные и вписанные углы, а также их важнейшие свойства.

Центральный угол окружности свойства центрального угла
Итак, величина центрального угла равна угловой величине дуги, на которую он опирается.
Значит, центральный угол величиной в градусов будет опираться на дугу, равную , то есть круга. Центральный угол, равный , опирается на дугу в градусов, то есть на шестую часть круга.

Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.

Также для решения задач нам понадобится понятие «хорда».

Центральный угол окружности свойства центрального угла
Равные центральные углы опираются на равные хорды.

1 . Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, — прямой.

2 . Центральный угол на больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Пусть центральный угол равен , а вписанный угол, опирающийся на ту же дугу, равен .

Центральный угол окружности свойства центрального угла

Мы знаем, что .
Отсюда ,
.

Ты нашел то, что искал? Поделись с друзьями!

3 . Радиус окружности равен . Найдите величину тупого вписанного угла, опирающегося на хорду, равную . Ответ дайте в градусах.

Центральный угол окружности свойства центрального угла

Пусть хорда равна . Тупой вписанный угол, опирающийся на эту хорду, обозначим .
В треугольнике стороны и равны , сторона равна . Нам уже встречались такие треугольники. Очевидно, что треугольник — прямоугольный и равнобедренный, то есть угол равен .
Тогда дуга равна , а дуга равна .
Вписанный угол опирается на дугу и равен половине угловой величины этой дуги, то есть .

4 . Хорда делит окружность на две части, градусные величины которых относятся как . Под каким углом видна эта хорда из точки , принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Центральный угол окружности свойства центрального угла

Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки ?»
Представьте, что вы сидите в точке и вам необходимо видеть всё, что происходит на хорде . Так, как будто хорда — это экран в кинотеатре 🙂
Очевидно, что найти нужно угол .
Сумма двух дуг, на которые хорда делит окружность, равна , то есть

Отсюда , и тогда вписанный угол опирается на дугу, равную .
Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол равен .

🎬 Видео

Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Вписанные и центральные углыСкачать

Вписанные и центральные углы

Решение задач на тему центральные и вписанные углы.Скачать

Решение задач на тему центральные и вписанные углы.

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Вписанные и центральные углыСкачать

Вписанные и центральные углы

Центральный и вписанный углыСкачать

Центральный и вписанный углы

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 классСкачать

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 класс

Вписанные и центральные углыСкачать

Вписанные и центральные углы

8 класс. Геометрия Центральные и вписанные углы Свойства касательных и секущих Решения задач Урок #3Скачать

8 класс. Геометрия Центральные и вписанные углы Свойства касательных и секущих Решения задач Урок #3
Поделиться или сохранить к себе: