Тригонометрия задачи с окружностью

Геометрия. Урок 1. Тригонометрия

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Тригонометрия задачи с окружностью

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Тригонометрия задачи с окружностью

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Видео:🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .

Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .

Координата по оси x – косинус угла , координата по оси y – синус угла .

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Тригонометрия: Таблица значений тригонометрических функций

0 °30 °45 °60 °90 °sin α01 22 23 21cos α13 22 21 20tg α03 313нетctg αнет313 30

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Видео:Вся Тригонометрия для Чайников, 10 класс, урок 1Скачать

Вся Тригонометрия для Чайников, 10 класс, урок 1

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Видео:Как запомнить тригонометрический круг специально ничего не выучивая?Скачать

Как запомнить тригонометрический круг специально ничего не выучивая?

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Видео:12 часов Тригонометрии с 0.Скачать

12 часов Тригонометрии с 0.

Сборник задач по теме «Тригонометрия»
методическая разработка на тему

Тригонометрия задачи с окружностью

Представлен сборник заданий на применении основных формул тригонометрии

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Скачать:

ВложениеРазмер
zadachnik.docx453.48 КБ

Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Предварительный просмотр:

по дисциплине «Математика»

на тему: «Сборник задач по теме «Тригонометрия»

Выполнила: Разиева Т.С.

Программа учебной дисциплины «Математика» предназначена для реализации государственных требований к минимуму содержания и уровню подготовки выпускников по специальностям среднего профессионального образования и является единой для всех форм обучения.

Сборник задач по теме «Тригонометрия» разработан в соответствии с федеральными государственными образовательными стандартами. Предложенные задачи по тригонометрии применяются на занятиях по математике для обучающихся 1 курса всех специальностей.

Данные задачи могут быть использованы на семинарах, практических занятиях и лекциях. Предлагаемые задачи помогут преподавателю создать необходимое мотивационное пространство, позволят использовать на занятии элементы проблемного и дифференцированного обучения. Все задания разделены между собой:

  • Задачи вида 1, 5, 41 и т.д. предназначены для самостоятельного решения или для работы на занятии.
  • Задачи вида 6, 30, 117 и т.д. предназначены для домашней работы.
  • Задачи вида 14, 22 носят дифференцированный и проблемный характер.

Создание мотивационного пространства возможно с помощью предложенных задач. В конце задачника дан необходимый для решения задач справочный материал с основными тригонометрическими формулами.

Использование данной разработки на занятиях имеет следующие преимущества:

  • обучающиеся могут самостоятельно выбирать и выполнять задания;
  • задания различного уровня сложности позволяют не только закрепить изученный материал, но и оперативно оценить уровень знаний каждого студента.
  1. Считая числовую окружность образом беговой дорожки стадиона, отметьте на ней конец дистанции: а) 1500 м; б) 42 км 195 м.

2 . Дана окружность радиуса 1 см. Чему равна длина: а) всей окружности; б) ее половины; в) ее четверти?

Тригонометрия задачи с окружностью

Горизонтальный диаметр СА и вертикальный диаметр DB разбивают единичную окружность на четыре четверти: АВ – первая, ВС – вторая, CD – третья, DA – четвертая.

Опираясь на эту геометрическую модель, решите задачи № 3, 4, 5, 6, 7, 8.

3 . Первая четверть разделена точкой М на две равные части, а точками К и Р – на три равные части (точка Р между М и В ). Чему равна длина дуги: АМ , МВ , АК , КР , РВ , АР , КМ ?

4 . Вторая четверть разделена пополам точкой М , а третья четверть разделена на три равные части точками К и Р (точка Р между К и D ). Чему равна длина дуги: АМ , ВК , МР , DC , КА , ВР , СВ , ВС ?

5 . Вторая четверть разделена точкой М пополам, а четвертая четверть разделена на три равные части точками К и Р (точка Р между К и А ). Чему равна длина дуги: АМ , АК , АР , РВ , МК , КМ ?

6 . Первая четверть разделена на две равные части точкой М , а четвертая разделена на три равные части точками К и Р (точка Р между К и А ). Чему равна длина дуги: АМ , ВD , CK , MP , DM , MK , СP , PС ?

7 . Третья четверть разделена точкой Р в отношении 1 : 5. Чему равна длина дуги: СР , PD , АР ?

8 . Первая четверть разделена точкой М в отношении 2 : 3. Чему равна длина дуги: АМ , МВ , DM , МС ?

9 . Выразите в радианах:

1) 1 °; 4) 10°; 7) 15°; 10) 30°;

2) 45°; 5) 60°; 8) 70°; 11) 90°;

3) 225°; 6) 240°; 9) 320°; 12) 330°.

10 . Переведите из градусной меры в радианную:

1) 120°; 3) 220°; 5) 300°; 7) 765°;

2) 210°; 4) 150°; 6) 315°; 8) 675°.

11 . Выразите в градусах:

1) π; 4) π; 7) π; 10) π;

2) π; 5) π; 8) 1,5π; 11) 3π;

3) 0,25π; 6) π; 9) – π; 12) π.

12 . Переведите из радианной меры в градусную:

1) π; 3) π; 5) π; 7) π;

2) π; 4) π; 6) π; 8) π.

13 . Окружность разделена на шесть равных частей. Выразить в градусах и радианах сумму дуг: Тригонометрия задачи с окружностью

14 . Угол А трапеции ABCD ( AD || BC ) на 70° меньше угла В и на 10° больше угла D . Найдите радианную меру каждого из углов трапеции.

15 . Перечертите в тетрадь и заполните таблицу:

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Видео:✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис ТрушинСкачать

✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис Трушин

Основное тригонометрическое тождество

Несложно догадаться, что синус и косинус угла – это величины, связанные друг с другом. Отложим на единичной окружности произвольный угол α и опустим из точки А перпендикуляр на ось Ох, в некоторую точку В:

Изучим треугольник АОВ. Он прямоугольный, а потому для него можно записать теорему Пифагора:

АВ 2 + ОВ 2 = ОА 2

Мы рассматриваем единичную окружность, а потому ОА = 1, ОВ = соsα, AB = sinα. Подставив эти величины в равенство, получим тождество:

sin 2 α + соs 2 α = 1

Его называют основным тригонометрическим тождеством, ведь именно оно связывает значение двух прямых тригонометрических ф-ций – синуса и косинуса.

Задание. В прямоугольном треугольнике есть угол α. Известно, что sin α = 0,8. Чему равен соsα?

Решение. Подставим в основное тригон-кое тождество значение sinα = 0,8 и получим уравнение:

sin 2 α + соs 2 α = 1

0,8 2 + соs 2 α = 1

0,64 + соs 2 α = 1

соs 2 α = 1 – 0,64

соsα = – 0,6 или соsα = 0,6

Нашли два возможных значения косинуса. Но по условию α – это острый угол, ведь в прямоугольном треугольнике угол не может быть больше 90°. То есть угол α относится к первой четверти, а потому его косинус положителен. Значит, соsα = 0,6.

Рассмотренный пример показал, что одному заданному значению синуса соответствует сразу два противоположных друг другу значения косинуса. Верно и обратное. Действительно, отложим по оси Ох некоторую величину соsα и проведем вертикальную линию, чтобы найти соответствующие ему значения синуса. Она пересечет единичную окружность в двух точках с противоположными ординатами:

По этой причине при решении задач на использование основного тригон-кого тождества обычно указывают, к какой четверти относится угол α.

Задание. Вычислите sinα, если соsα = 0,28 и α принадлежит IV четверти.

sin 2 α + соs 2 α = 1

0,28 2 + sin 2 α = 1

0,0784 + sin 2 α = 1

sin 2 α = 1 – 0,0784

sin α = –0,96 или sin α = 0,96

Так как α принадлежит IV четверти, то sinα должен быть отрицательным, поэтому sinα = – 0,96.Напомним, что в IV четверти значение косинуса положительно, ведь соответствующая ей дуга единичной окружности располагается правее оси Оу, то есть абсциссы точек, принадлежащих ей, положительны.

Задание. Найдите tgα, если sinα = 5/13 и π/2 2 α + соs 2 α = 1

соs 2 α = 1 – sin 2 α = 1 – (5/13) 2 = 169/169 – 25/169 = 144/169

соsα = – 12/13 или соsα = 12/13

Условие π/2 2 α + соs 2 α = 1

Далее поделим его на величину соs 2 α:

Крайнее левое слагаемое – это величина tg 2 α, а следующая дробь равна единице, так как у неё совпадают числитель и знаменатель:

В итоге нам удалось получить ф-лу, которая связывает значение тангенса и косинуса угла. Есть такая формула и для котангенса. Для ее получения необходимо поделить основное тригон-кое тождество на sin 2 α:

Задание. Известно, что tgα = 0,75. Найдите соsα и sinα, если угол α принадлежит III четверти.

Просто подставляем в ф-лу известное значение тангенса и решаем получившееся уравнение. Для простоты вычислении заменим десятичную дробь 0,75 на обычную 3/4:

Так как угол относится к III четверти, где косинус отрицателен, то

Синус угла найдем, используя основное тригон-кое тождество:

sin 2 α + соs 2 α = 1

sin 2 α = 1 – соs 2 α = 1 – (– 0,8) 2 = 1 – 0,64 = 0,36

sinα = – 0,6 или sinα = 0,6

С учетом того, что в III четверти синус становится отрицательным, следует выбрать вариант sinα = – 0,6

Ответ: sinα = – 0,6; соsα = – 0,8.

Иногда ф-лы используют не для вычисления значений тригон-ких выражений, а для упрощения выражений. Из тождества sin 2 α + соs 2 α = 1 несложно получить из выражения

sin 2 α = 1 – соs 2 α

соs 2 α = 1 – sin 2 α

которые помогают в работе с длинными ф-лами.

Задание. Упростите выражение

4sin 2 α + 9соs 2 α – 6

таким образом, чтобы в нем не содержалось синуса.

Решение. Произведем замену sin 2 α = 1 – соs 2 α:

4sin 2 α+ 9соs 2 α – 6 = 4(1 – соs 2 α)+ 9соs 2 α – 6 =

= 4 – 4 соs 2 α + 9соs 2 α – 6 = 5соs 2 α – 2

Видим, что получилось значительно более простое выражение.

Ответ: 5соs 2 α – 2.

Задание. Избавьтесь от синуса в выражении

sin 4 α – соs 4 α

Решение. Воспользуемся ф-лой разности квадратов:

sin 4 α – соs 4 α = (sin 2 α – соs 2 α)(sin 2 α + соs 2 α) = (sin 2 α – соs 2 α)•1 =

= 1 – соs 2 α– соs 2 α = 1 – 2 соs 2 α

Ответ:1 – 2 соs 2 α.

Задание. Упростите дробь

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Тригонометрические функции суммы и разности

Легко проводить вычисления, когда все тригонометрические действия выполняются над одним углом α. Однако иногда в задачах добавляется ещё один угол, который обычно обозначают как β. Существуют ф-лы, с помощью которых можно вычислять тригон-кие ф-ции от суммы и разности углов α и β.

Вывод этих ф-л достаточно сложен, поэтому сначала мы просто без доказательства приведем две из них, позволяющие вычислять синус суммы и косинус суммы:

Достаточно запомнить их, а далее следующие формулы можно выводить из них. Так, если вместо β подставить угол (–β), то получим формулы для разности. При этом мы используем тот факт, что синус – нечетная ф-ция, то естьsin (– β) = – sinβ, а косинус – четная ф-ция, то есть соs (– β) = соsβ:

Теперь поступим также с ф-лой для косинуса разности:

Итак, нам удалось получить ф-лы для нахождения синуса и косинуса суммы и разности углов.

С помощью этих формул возможно вычислить значение тригон-ких ф-ций для некоторых нестандартных углов. (Стандартными считаются углы в 0°, 30°, 45°, 60° и 90°, ведь для них значение тригон-ких ф-ций можно узнать из таблички.)

Задание. Вычислите соs 150°.

Решение. В табличке стандартных углов есть углы, равные 90° и 60°. Их сумма как раз равна 150°. Поэтому запишем:

Задание. Вычислите синус, косинус и тангенс для угла 15°.

Решение. Угол в 15° можно представить как разность 45° – 30°. Тогда синус будет вычисляться так:

Далее вычислим косинус:

Можно выполнить проверку. Полученные значения должны удовлетворять основному тригон-кому тождеству. И действительно:

Проверка пройдена: сумма квадратов синуса и косинуса оказалась равной единице. Теперь посчитаем tg 15°, используя определение тангенса:

Задание. Вычислите значение тригонометрического выражения

sinπ/7 соsπ/42 + sinπ/42 соsπ/7

Решение: Значение тригон-ких ф-ций для углов π/7 и π/42 мы не знаем, однако это не помешает вычислениям. Можно заметить, что исходное выражение представляет собой синус суммы π/7 и π/42:

sinπ/7 соsπ/42 + sinπ/42 соsπ/7 = sin (π/7 + π/42) = sinπ/6 = 1/2

Задание. Упростите выражение

Вынесем за скобки множитель 2:

Теперь произведем замену:

C учетом этого можно переписать выражение и использовать ф-лу суммы косинусов:

Ответ: 2соs (π/6 + α).

Видео:18+ Математика без Ху!ни. Формулы ПриведенияСкачать

18+ Математика без Ху!ни. Формулы Приведения

Формулы двойного угла

Что будет, если формулу синуса суммы подставить не два различных угла α и β, а два одинаковых угла α и α? Получится ф-ла для синуса двойного угла:

Аналогично можно составить ф-лу и для косинуса двойного угла:

Итак, справедливы следующие ф-лы:

Задание. Вычислите sin 120° и соs 120°.

Задание. Упростите выражение

соs 2 t – соs 2t = соs 2 t – (соs 2 t – sin 2 t) = соs 2 t – соs 2 t + sin 2 t = sin 2 t

Задание. Докажите, что функция

является периодической и имеет период, равный π.

Решение. Используем ф-лу квадрата суммы:

Таким образом, исходную ф-цию можно переписать в виде

По определению, ф-ция является периодической с периодом Т, если выполняется условие у(х + Т) = у(х). Поэтому подставим в нашу ф-цию величину х + π:

Получили, что у(х + π) = y(x), то есть ф-ция имеет период, равный π.

Задание. Выведите формулы синуса и косинуса тройного угла.

Решение. Для их получения следует использовать ф-лу синуса суммы углов, в которую подставляют вместо β величину 2α:

Аналогично можно получить и ф-лу для косинуса тройного угла:

Видео:ТРИГОНОМЕТРИЯ с нуля за 30 минутСкачать

ТРИГОНОМЕТРИЯ с нуля за 30 минут

Формулы понижения степени

Если нам необходимо узнать косинус угла, который вдвое больше табличного, мы используем ф-лу:

соs 2α = соs 2 α – sin 2 α

А что делать, если нам надо вычислить косинус угла, который вдвое меньше известного? Попробуем преобразовать ф-лу косинуса двойного угла:

В результате нам удалось получить тождество, позволяющее по косинусу удвоенного угла найти косинус самого угла! Однако значительно чаще в тригонометрии это равенство записывают в обратном порядке:

и называют ф-лой понижения степени. Действительно, в левой части стоит косинус в квадрате, а справа – косинус без квадрата, но вычисляется он от угла 2α, а не α.

Попробуем получить аналогичную ф-лу и для синуса. Для этого используем основное тригон-кое тождество:

С помощью этих ф-л можно вычислять тригон-кие ф-ции для некоторых малых углов. Так, ранее мы с использованием ф-лу разности синусов определили, что

При этом мы представляли угол 15° как разность 45° – 30°. Но как посчитать соs 7,5°? Этот угол невозможно представить как разницу или сумму известных нам табличных углов (0°, 30°; 45°; 60° и 90°). Однако поможет ф-ла понижения степени. Действительно, ведь 2•7,5° = 15°. Тогда можно записать:

Мы нашли соs 2 7,5°. Чтобы узнать соs 7,5°, необходимо извлечь квадратный корень:

Так как угол 7,5° принадлежит I четверти, то его косинус должен быть положительным, поэтому можно записать:

Видно, что получается довольно громоздкое выражение. Используя ф-лу понижения степени, можно найти косинус и угла, который ещё вдвое меньше, то есть равен 3,75°, но в результате получится ещё более громоздкое выражение.

Задание. Вычислите sinπ/8.

Решение. Угол π/4 является табличным (его градусная мера составляет 45°). Поэтому можно записать:

Эти примеры показывают, что тригон-кие ф-ции многих нестандартных углов можно выразить, используя квадратные корни. Возникает вопрос – а любую ли тригонометрическую ф-цию можно выразить таким способом? Оказывается, что нет. Например, sin 10° невозможно найти ни в одной, даже самой подробной тригонометрической таблице. Мы не будем это доказывать, но эту величину невозможно представить в виде выражения, используя арифметические операции и корни. Однако существуют приближенные методы, позволяющие с любой наперед заданной точностью вычислять значение тригонометрических ф-ций.

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Формулы приведения

Возможно, вы уже заметили, что синусы и косинусы принимают одинаковые значения в углах, чья сумма равна 90°. Например, sin30° = соs60° = 1/2, и при этом 30° + 60° = 90°. Также мы знаем, что sin 45° = соs 45° (45° + 45° = 90°) и sin60° = соs30° (60° + 30°). В чем причина такой закономерности и справедлива ли она для нестандартных углов?

Используя ф-лу синуса разности, мы можем записать, что

Полученная ф-ла sin (90° – α) = соsα называется формулой приведения. При ее выводе мы использовали тот факт, что sin 90° = 1, а соs 90° = 0, поэтому формула получилась очень простой. Однако синусы и косинусы других углов, кратных 90° (или кратных π/2, если измерять углы в радианах), также равны 0, 1 или – 1, поэтому для них тоже можно получить подобные простые ф-лы, например:

Похожих ф-л можно написать несколько десятков! Все их запоминать не надо, так как существует особое мнемоническое правило, позволяющее записать необходимую ф-лу.

Пусть есть некоторое тригон-кое выражение вида

где f – тригонометрическая ф-ция (sin; соs; tg; ctg)

k– угол, кратный π/2 (π/2, π, 3π/2, 2π)

Мы хотим заменить ее другой ф-цией, только от угла α. На первом шаге мы смотрим на слагаемое k. Если оно кратно π (– π, π, 2π), то ф-ция f остается неизменной. Если же слагаемое k – это число π/2 или 3π/2, то ф-цию f надо поменять на так называемую кофункцию (синус меняем на косинус, тангенс на котангенс и наоборот).

Далее надо определить знак, стоящий перед новой ф-цией. Для этого мы предполагаем, что α – это острый угол, то есть он принадлежит I четверти. Далее с учетом этого предположения смотрим, в какую четверть попадает угол k ± α, и какое значение принимает там исходная тригонометрическая ф-ция. Если она отрицательна, то перед новой тригонометрической ф-цией надо поставить минус. В противном случае ничего ставить не надо.

Лучше всего изучить это алгоритм на примерах.

Задание. Упростите выражение соs (π/2 + α).

Решение. Первый шаг – смотрим на слагаемое под знаком косинуса. Это число π/2. Оно НЕ кратно π, а потому мы должны поменять косинус на синус:

Второй шаг – надо определить, надо ли ставить минус перед синусом. Если α – это острый угол, то угол (π/2 + α) попадет во II четверть:

Во второй четверти косинус отрицателен, а потому перед синусом следует поставить минус:

соs (π/2 + α) = – sinα

Важное примечание. В этом примере для составления формулы приведения мы «предположили», что угол α является острым. В результате нам удалось получить формулу соs (π/2 + α) = – sinα. Однако отметим, что полученная нами формула выполняется для абсолютно любых значений угла α, а не только для 0° 1 2 + 3 соs2x

Поделиться или сохранить к себе: