См. также: http://akotlin.com/index.php?sec=1&lnk=3_11
Предисловие
Введение
1. Принцип наращивания размерностей
2. Принцип аналогий
3. Принцип многомерных массивов
4. Принцип сущностей
5. Принцип композиции
6. Принцип схлопывания
7. Принцип бесконечной рекурсии
Заключение
Литература
^Примечания (в конце статьи)
Влекут с завидным постоянством
Нас многомерные пространства.
Их наделяем чудесами,
О них мечтаем мы часами.
Повсюду ищем день за днём.
При этом сами в них живём. ©
Почему люди веками пытаются понять и объяснить четырёхмерное пространство? Зачем им это нужно? Что толкает их на поиски загадочного четырёхмерного мира? Представляется, что этому есть несколько причин.
Во-первых, людей подталкивает к поиску невидимого пространства неосознаваемое ими чувствознание, другими словами, вера в Высшие основы Мироздания, как память о пребывании в том мире ещё до момента своего рождения.
Во-вторых, на существование Высшего мира прямо указывают все мировые религии и эзотерические учения. Данный факт невозможно сбросить со счетов или объявить случайным совпадением случайностей. Тем более, что случайность является всего лишь математической абстракцией и потому принципиально нереализуема в реальном мире, в котором все события строго обусловлены причинно-следственными связями.
В-третьих, на это указывает опыт, накопленный огромным числом экстрасенсов и мистиков всех времён и народов, в большинстве случаев никак не связанных между собой и не знакомых с опытом своих «коллег», но свидетельствующих, фактически, об одном и том же. Более того, каждый человек проводит в том мире третью часть своей жизни; это происходит во время сна.
Так в чём же тогда состоит проблема понимания четырёхмерного пространства?
С одной стороны, никакой проблемы понимания четырёхмерного пространства, казалось бы, не должно быть вовсе, так как имеется современное Учение – Агни Йога [1], б`ольшая часть книг которого почти целиком посвящена мирам высшей размерности. Имеются также подробнейшие разъяснения базовых положений этого Учения и, в частности, всех основных особенностей многомерных миров [2: т. 2, гл. 8].
С другой стороны, проблема налицо, поскольку в науке нет даже определений^1 таких важнейших компонентов пространства, как точка, прямая, плоскость, а понятие размерность [3] неточно^2 отражает фундаментальное свойство размерности пространства. Всё это в совокупности с верой в нуль, непрерывность и бесконечность^3, способствует появлению различных заблуждений и противоречий, например, таких как:
• оперирование понятием пространства бесконечно большой размерности;
• отрицание возможности существования даже четырёхмерного пространства только на том основании, что четвёртую перпендикулярную координатную ось провести невозможно;
• непонимание сути многомерности пространства;
• игнорирование реально существующих^4 пространств высшей размерности;
• разработка «многомерных» моделей Вселенной^5, не имеющих ничего общего с реальностью [4].
Предпринималось много попыток обосновать существование высшего, четырехмерного пространства. Среди них известны математические, физические, геометрические, психологические и другие попытки [2: т. 2, с. 235]. Однако все их можно признать неудачными, поскольку они так и не дали чёткого и верного ответа на главный вопрос: что собой представляет и куда направлена «ось» 4-го измерения.
Рассмотрим теперь основные подходы к конструированию 4-х мерного пространства подробнее.
1. ПРИНЦИП НАРАЩИВАНИЯ РАЗМЕРНОСТЕЙ
Данный подход, или принцип основан на следующих простых рассуждениях. Пусть, к примеру, имеется 3D-объект – школьная тетрадь в линейку. Здесь буква «D» означает «размерность» (от англ. слова Dimension). Будучи трёхмерным объектом, тетрадь обладает тремя измерениями: длиной, шириной и толщиной.
Открыв тетрадь, мы можем наглядно убедиться в том, что «пространство» нулевой размерности (точки линеек) вложено в одномерное «пространство» (горизонтальные линии), а оно, в свою очередь, вложено в двухмерное «пространство» (страницу). Двухмерное «пространство», или страницы вложено в трёхмерное (тетрадь).
Простая индукция позволяет предположить, что трёхмерное пространство должно быть вложено в четырёхмерное, и так далее [5].
Прежде всего, здесь следует отметить, что наращивание размерности пространства на этапах 0D ––> 1D, 1D ––> 2D, 2D ––> 3D всегда осуществлялось в направлении, ПЕРПЕНДИКУЛЯРНОМ предыдущим направлениям. При переходе же к 4D-пространству этот принцип был нарушен, что ставит под сомнение как допустимость такого приёма, так и справедливость полученных результатов.
Кроме того, поскольку математическая точка не обладает размерами, то «пространства» с размерностью 0, 1 и 2 являются (также как и сама точка) лишь математическими абстракциями, то есть реально существовать не могут. Таким образом, минимальная размерность реального пространства равна трём: Dmin = 3. Следовательно, принцип индукции, выведенный для АБСТРАКТНЫХ объектов, не может быть положен в основу конструирования РЕАЛЬНОГО 4-х мерного пространства, а само 4-х мерное пространство не может быть объяснено рассмотренным выше способом.
1.1. Четырёхмерное пространство, полученное путём наращивания размерностей, является не более чем математической абстракцией, то есть игрой воображения.
1.2. Применение принципа наращивания размерностей для обоснования 4D-пространства чревато формированием ложных представлений о многомерных пространствах (рис. 1.2).
1.3. Наш 3-х мерный мир, который мы видим, ощущаем и понимаем, принципиально не может оказаться вложенным в какой-либо другой мир с числом измерений, отличным от трёх.
Тем не менее, отметим в нашем примере с тетрадкой и запомним два очень важных момента:
1. НИЗШЕЕ пространство всегда мысленно «вкладывалось» В ВЫСШЕЕ, то есть в пространство с б`ольшим числом измерений.
2. ВСЕ рассмотренные пространства наполнены материей ОДНОГО типа, то есть трёхмерной атомарной материей. В примере это были атомы, входящие в состав тетрадной бумаги и краски.
2. ПРИНЦИП АНАЛОГИЙ
Этот способ создания «четырёхмерных» фигур близок к рассмотренному в предыдущем разделе. В отличии от своих предшественников сторонники данного способа честно признают тот факт, что четвёртую перпендикулярную ось провести невозможно, но уверяют, что для получения четвёртого измерения необходимо и достаточно простых аналогий (табл. 2.1). Однако доказательства четырёхмерности полученных фигур, к сожалению, не приводятся.
Рассматривая рисунок 2.1 слева направо и фиксируя свойства геометрических объектов, придём к таблице свойств.
Таблица 2.1
=======================================================
1D: Отрезок | 2D: Треугольник | 3D: Тетраэдр | 4D: Симплекс
=======================================================
2 вершины | 3 вершины | 4 вершины | 5 вершин
1 ребро | 3 ребра | 6 рёбер | 10 рёбер
——— | 1 грань | 3 грани | 10 граней
——— | ——— | 1 тетрагрань | 5 тетраграней
——— | ——— | ——— | 1 симплекс-грань
Как видно из рисунка и таблицы, в основе «принципа аналогий» лежит идея достаточности для перехода в новое измерение простого увеличения числа вершин геометрической фигуры и попарного соединения всех вершин рёбрами.
Более наглядное представление о принципе аналогий можно получить, просмотрев фрагмент видеофильма [7].
Подводя итоги, сформулируем выводы.
2.1. Основанные на принципе аналогий «многомерные» построения являются математическими абстракциями и существуют исключительно в воображении.
2.2. Разработанные виртуальные (компьютерные) реализации «четырёхмерных» геометрических многогранников [6] не могут служить обоснованием реальности таких объектов, поскольку само понятие «виртуальный» является синонимом понятия «не существующий в реальности».
2.3. Перенесение этих абстракций в реальный мир требует предварительного доказательства их многомерности.
3. ПРИНЦИП МНОГОМЕРНЫХ МАССИВОВ
В предыдущих разделах мы убедились, что понять и описать реальное (не абстрактное) 4-х мерное пространство оказалось совсем непросто. Однако математика, как известно, с лёгкостью оперирует так называемыми многомерными объектами, например, «многомерными» массивами и векторами.
В связи с данным обстоятельством возникает идея применить для описания многомерных пространств и объектов якобы многомерные математические конструкции, например, массивы. Задать многомерный массив можно, дав определение, но можно ввести его в рассмотрение и поэтапно, то есть путём последовательных рассуждений, аналогичных проделанным в примере со школьной тетрадкой. Пойдём вторым путём:
• Положение точки x на отрезке прямой задаётся одной координатой, другими словами, однокомпонентным одномерным массивом: A1 = (x1);
• Положение точки x на плоскости определяется двумя координатами, то есть двухкомпонентным одномерным массивом: A2 = (x1, x2);
• Положение точки x в трёхмерном пространстве будет описано тремя координатами, или трёхкомпонентным одномерным массивом: A3 = (x1, x2, x3);
• Продолжая индукцию, придём к четырёхкомпонентному одномерному массиву, описывающему положение точки x в четырёхмерном гиперпространстве: A4 = (x1, x2, x3, x4).
Применяя понятие массива рекурсивно, то есть вкладывая одни массивы в другие, можно ввести иерархическую систему массивов для описания более крупных пространственных объектов:
• Точка – массив координат в текущем пространстве;
• Линия – массив точек (матрица);
• Страница – массив линий («куб»);
• Книга – массив страниц («гиперкуб»);
• Книжная полка – массив книг (массив 5-го порядка);
• Книжный шкаф – массив полок (массив 6-го порядка);
• Книгохранилище – массив шкафов (массив 7-го порядка).
Приведём ещё один пример применения моделей пространства на основе вложенных многомерных массивов:
• Атом – (одномерный) массив координат;
• Молекула – (двухмерный) массив атомов;
• Тело – (трёхмерный) массив молекул;
• Небесное тело – (четырёхмерный) массив тел;
• Звёздная система – (пятимерный) массив небесных тел;
• Галактика – (шестимерный) массив звёздных систем;
• Вселенная – (семимерный) массив Галактик.
3.1. Все объекты в рассмотренной иерархической модели имеют ОДИНАКОВУЮ пространственную размерность, которая определяется числом компонентов исходного одномерного массива. Однако этим компонентам можно дать не только пространственную, но и произвольную интерпретацию.
3.2. Ни количество вложенных массивов, ни их размерность (правильнее говорить – порядок!) никак не связаны с мерностью моделируемого пространства.
3.3. Таким образом, применив «многомерные» (правильнее говорить – многокомпонентные!) массивы, мы опять ни на шаг не приблизились к нашей цели – пониманию смысла многомерного пространства.
4. ПРИНЦИП СУЩНОСТЕЙ
Попробуем теперь от идеи конструирования мифических якобы «четырёхмерных» объектов перейти к реальным сущностям, чтобы взглянуть на мир как бы изнутри, то есть их «глазами». Предположим также, что в пространстве любой размерности (например, в трёхмерном пространстве) могут одновременно пребывать существа разного уровня развития, с разными возможностями по перемещению в пространстве, то есть с разным числом измерений.
Начнём с камней. К этой же группе можно причислить также «тессеракты», «симплексы» и все прочие многогранники. Это всё пассивные объекты, не способные к движению ни в одном из направлений. Поэтому отнесём их к категории «существ» нулевой^6 размерности.
К одномерным^7 сущностям можно отнести растения, которые имеют возможность «двигаться» только в одном направлении (в «направлении» увеличения своих размеров) с жёсткой привязкой к одной конкретной точке пространства.
Двухмерными^8 существами назовём тех, кто будет способен перемещаться в двух направлениях, то есть в пределах поверхности. Даже если эта поверхность имеет сложные очертания и переходит, например, с поверхности почвы в поверхность ствола дерева.
Простая аналогия позволяет предположить, что трёхмерные существа должны иметь способность перемещаться в 3-х различных направлениях. Например, они должны уметь не только ползать, но и ходить, прыгать или летать.
Та же аналогия приводит нас к выводу об обязательном наличии у четырёхмерных сущностей четвёртой сверх способности к перемещению в 4-м направлении. Таким направлением может стать движение ВНУТРЬ трёхмерных объектов.
Свойствами 4-х мерных сущностей обладают, например, эфир (радиоволны), радиоактивные ядра гелия (альфа-частицы), вирусы и так далее.
4.1. Четырёхмерные сущности невидимы. Например, размеры вируса лишь на два порядка превышают размеры атома. На острие иглы могут свободно разместиться 100 000 вирусов гриппа.
4.2. Логично предположить, что невидимые четырёхмерные сущности обитают в невидимом четырёхмерном пространстве.
4.3. Четырёхмерное пространство должно обладать очень тонкой структурой. Например, пространством обитания вируса является биологическая клетка, размеры которой измеряются нанометрами (1 нм = 1/1000000000 м).
4.4. Координатная «ось» четвёртого измерения направлена внутрь трёхмерного пространства.
4.5. Само по себе четырёхмерное пространство и четырёхмерные сущности трёхмерны. Однако ОТНОСИТЕЛЬНО трёхмерного пространства они обладают свойствами 4-го измерения.
5. ПРИНЦИП КОМПОЗИЦИИ
С появлением Теории относительности [8] в сознании широких масс укоренилось представление о времени, как о четвёртой пространственной координате [9]. Примирению разума со столь странной точкой зрения, очевидно, способствовали также различные временные графики, тренды и диаграммы. Удивительно только, что творческое воображение приверженцев такого взгляда на МНОГОмерное пространство почему-то всегда таинственным образом полностью иссякает на цифре «четыре».
Из физики известно, что существуют различные системы физических единиц, в частности, система СГС (сантиметр-грамм-секунда) [10], где в качестве независимых физических величин используются длина, масса и время. Все остальные величины выводятся из трёх основных. Таким образом, в роли трёх «китов» Мироздания в СГС выступают Пространство, Материя и Время.
В современной физике пространство и время искусственно объединены в единый четырёхмерный «континуум», называемый пространством Минковского [11, 12]. Многие искренне верят в то, что оно и есть то самое четырёхмерное пространство. Однако подобный взгляд на многомерное пространство чреват появлением целого ряда нелогичностей и несуразностей.
Во-первых, время, будучи независимой величиной, не может выступать в качестве свойства (пространственной характеристики) другой НЕЗАВИСИМОЙ величины – пространства.
Во-вторых, если всерьёз считать время четвёртой пространственной координатой, то в таком случае четырёхмерные сущности (то есть все мы, как обитатели «четырёхмерного» пространства-времени) должны обладать способностью перемещаться не только в пространстве, но и во времени! Однако мы знаем, что это не так. Таким образом, одна из якобы пространственных координат не обладает свойствами, которые присущи настоящим пространственным координатам.
В-третьих, настоящее пространство не может само по себе перемещаться относительно своих неподвижных обитателей ни в одном из своих направлений. Однако пространство-время такой фантастической способностью обладает. Более того, оно движется в четвёртом (временном) направлении исключительно избирательно: с разной скоростью по отношению к камням, растениям, животным и людям.
В-четвёртых, можно предположить, что по логике релятивистов 5-ти мерным пространством должна стать композиция пространства-времени с третьим «китом» Мироздания – материей.
В-пятых, напрашивается резонный вопрос: с какой системой единиц (СГСЭ или СГСМ) будет связано 6D-пространство?
Однако самым парадоксальным в релятивистском видении 4D-пространства является то, что на типичном релятивистском 3-х мерном графическом изображении якобы 4-х мерного пространства (рис. 5.1) 4-я координатная (временн`ая) ось отсутствует как таковая (!); зато хорошо виден результат присутствия материи (массы), которая в составе четырёхмерного «пространства-времени» даже не упоминается. 🙂
Наверное, именно поэтому словосочетание «пространство-время» так часто вызывает скепсис и ассоциируется с бородатым анекдотом про то, как в армии был найден собственный способ композиции пространства и времени, выразившийся в приказе рыть канаву от забора до обеда.
5.1. Совместное рассмотрение пространства и времени вполне допустимо.
5.2. Наделение времени свойствами пространства – искусственный приём, далёкий от реальности.
5.3. Релятивистский «четырёхмерный» пространственно-временной «континуум» не имеет ни малейшего отношения к реальному четырёхмерному пространству, тем более, к пространствам, размерность которых превышает 4, и является ещё одним примером математических фантазий на тему многомерности.
6. ПРИНЦИП СХЛОПЫВАНИЯ
Поскольку центральным вопросом любой модели 4-х мерного пространства является вопрос о выборе направления 4-ой пространственной координаты, в разделах 1 – 5 были рассмотрены различные подходы к решению этой проблемы.
Так, авторы «четырёхмерных» многогранников направляли четвёртую ось, куда хотели. Авторы многомерных массивов – в никуда. Вирусы и другие четырёхмерные сущности могли перемещаться внутрь трёхмерного пространства. Релятивисты же наделили обитателей 4-х мерного пространства (к которым они причислили и всех нас) способностью перемещаться во времени, как в обычном пространстве, значит, – в любом временн`ом направлении.
Казалось бы, все варианты уже исчерпаны, и настал момент определиться с выбором одного из известных направлений для четвёртой оси. Ан, нет! Авторы модной ныне «Теории струн» [4] нашли ещё одно никем не занятое «направление». Глядя на смотанный поливочный шланг, они придумали все «лишние» координатные оси скрутить в колечки, трубочки и бублички. А чтобы объяснить, почему мы их не видим, наделили колечки размерами, которые «бесконечно малы даже в масштабе субатомных частиц» [13]. Сторонники струнной теории считают, что все высшие пространственные измерения самопроизвольно схлопнулись, или по научному «компактифицировались» сразу после образования Вселенной.
Предвосхищая другой вопрос, – Зачем схлопнулись? – Теория струн выдвинула также гипотезу «ландшафта», в соответствии с которой никакого «схлопывания» вовсе и не было, все оси высших измерений целёхоньки, а невидимы они для нас по той причине, что наше 3-х мерное пространство, будучи гиперповерхностью (бр`аной) многомерного пространства Вселенной, якобы не позволяет нам взглянуть за пределы этой самой браны. К сожалению, ориентированы невидимые координатные оси в никому неизвестных направлениях.
Кроме перечисленного, нельзя не коснуться также других «заслуг» Теории струн.
Теория эта создавалась для описания физических закономерностей, проявляющихся на самом низком уровне рассмотрения материи, то есть на уровне субатомных частиц, а также их взаимодействий. Однако ситуация, когда одна гипотеза (Теория струн) пытается описать другие гипотезы (догадки о строении и о количестве элементарных частиц), представляется весьма сомнительной. Настораживает также полное отсутствие единого мнения по вопросу о реальном числе измерений многомерной Вселенной.
Существует множество способов свести многомерные струнные модели к наблюдаемому 3-х мерному пространству. Однако критерия для определения оптимального пути редукции не существует. В то же время, количество таких вариантов поистине огромно. По некоторым оценкам их число вообще бесконечно.
Кроме того, «математический аппарат теории струн столь сложен, что сегодня никто даже не знает точных уравнений этой теории. Вместо этого физики используют лишь приближенные варианты этих уравнений, и даже эти приближенные уравнения столь сложны, что пока поддаются только частичному решению» [13]. При этом хорошо известно, что чем сложнее теория, тем дальше она отстоит от Истины.
Будучи исключительно продуктом воображения, Теория струн остро нуждается в экспериментальном подтверждении и проверке, однако, скорее всего, в обозримом будущем её нельзя будет ни подтвердить, ни проверить в силу очень серьёзных технологических ограничений. В этой связи некоторые учёные сомневаются, заслуживает ли вообще такая теория статуса научной.
6.1. Сосредоточив всё внимание на описании мельчайших частиц, Теория струн упустила из виду объяснение таких проявлений миров Высшей размерности, как вещие сны, астральные выходы, одержание, телепатия, пророчества и т. п.
6.2. То обстоятельство, что Теория струн хорошо описывает целый ряд явлений без привлечения старых физических теорий, подтверждает гипотезу о реальной многомерности Вселенной.
7. ПРИНЦИП БЕСКОНЕЧНОЙ РЕКУРСИИ
Принцип бесконечной рекурсии или фрактальности Мира основан на гипотезе о бесконечной делимости материи и берёт своё начало с трудов греческого философа Анаксагора (5-й век до Р. Х.), утверждавшего, что в каждой частице, какой бы малой она ни была, «есть города, населённые людьми, обработанные поля, и светит солнце, луна и другие звёзды, как у нас».
В философском плане данную идею разделял, к примеру, В. И. Ленин (1908), считавший, что «электрон так же неисчерпаем, как и атом, природа бесконечна. ». В литературе – Джонатан Свифт со своим знаменитым Гулливером (1727). В поэзии – Валерий Брюсов (1922):
Быть может, эти электроны
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков!
Ещё, быть может, каждый атом –
Вселенная, где сто планет;
Там – всё, что здесь, в объёме сжатом,
Но также то, чего здесь нет.
Их меры малы, но всё та же
Их бесконечность, как и здесь;
Там скорбь и страсть, как здесь, и даже
Там та же мировая спесь.
Сторонники рекурсивного подхода из числа современных учёных считают, что Вселенная состоит из бесконечного числа вложенных фрактальных уровней материи с подобными друг другу характеристиками. Пространство при этом имеет ДРОБНУЮ размерность стремящуюся к трём. Точное значение размерности зависит от строения материи и её распределения в пространстве.
Таким образом, здесь имеются два принципиальных момента, которые, фактически, обесценивают безусловно продуктивную идею о вложенности материи и планов Мироздания друг в друга. Во-первых, это совершенно бессмысленное вложение гигантской Вселенной в каждую микрочастицу собственной материи. Во-вторых, исключительно вольное обращение с понятием размерности.
Поскольку темой статьи является уяснение принципов многомерности пространства, остановимся на втором моменте более подробно.
Например, С. И. Сухонос [14], соглашаясь с тем, что даже паутинка трёхмерна, всерьёз обосновывает нульмерность Вселенной. для «внешнего наблюдателя». Однако, пребывая внутри замкнутого пространства Вселенной, мы не в праве делать какие-либо умозаключения о том, что находится за её внешней границей. Таким образом, любые рассуждения о мыслях «внешнего наблюдателя» относятся, в лучшем случае, к жанру научной фантастики.
Галактикам, в плане размерности, повезло несколько больше, чем Вселенной: их скопления автор [14] признаёт одномерными, «неправильные» Галактики считает двухмерными, «правильные» (сферической формы) – трёхмерными, а статусом четырёхмерного пространства наделяет спиральные Галактики.
К сожалению, понятие «размерность» пространства в этих рассуждениях связано, прежде всего, с понятием «размер», затем – «форма» и меньше всего размерность зависит от числа измерений материи.
7.1. Бесконечность, будучи продуктом воображения, не реализуема в реальном мире, следовательно идея бесконечной рекурсии является не более, чем мифом.
7.2. Суждение о том, что часть (к примеру, атом) может содержать целое (Вселенную), является абсурдом.
7.3. Пространства с дробной размерностью не существуют по определению, а взгляд сторонников рекурсивного подхода на размерность противоречит общепринятым представлениям и здравому смыслу.
1. На адекватное отражение реальной картины мира может претендовать не более, чем только одна из рассмотренных выше моделей 4-х мерного пространства, поскольку все они между собой попарно не совместны.
2. Все проблемы с пониманием многомерного пространства существуют исключительно внутри науки, в основном, в математике.
3. Базовые математические абстракции, прежде всего, «бесконечность», «непрерывность» и «нуль» не позволяют понять и описать пространства с размерностью выше трёх, поэтому все существующие представления о якобы многомерном пространстве выглядят смешно и наивно.
4. Разработка математических моделей пространств высшей размерности невозможна без пересмотра древних (2500-летней давности) догматов трёхмерной (то есть современной) математики.
5. Представление о разработанной автором реальной (не фантастической) многомерной модели вложенных пространств можно найти в [15].
1. Агни Йога. – 15 книг в 3-х томах. – Самара, 1992.
2. Клизовский А. И. Основы миропонимания Новой Эпохи. В 3-х томах. – Рига: Виеда, 1990.
3. Микиша А. М., Орлов В. Б. Толковый математический словарь: Основные термины. М.: Рус. яз., 1989. – 244 с.
4. Девис. П. Суперсила: Поиски единой теории природы. – М.: Мир, 1989. – 272 с.
5. Тессеракт: Материал из Википедии. – https://ru.wikipedia.org/wiki/Тессеракт
6. Измерения: видеофильм, часть 3 из 9 / Авторы: Йос Лейс, Этьен Жис, Орельян Альварез. – 14 мин (фрагмент – 2 мин).
7. Александр Котлин. Пространство-материя. Концепция. – http://www.proza.ru/2011/03/26/906
8. Специальная теория относительности. – https://ru.wikipedia.org/wiki/ Специальная_теория_относительности
9. Успенский П. Д. Tertium organum: Ключ к загадкам мира. – Типогpафiя СПб. Т-ва Печ. и Изд. дела «Тpyдъ», 1911.
10. СГС: Материал из Википедии. – http://ru.wikipedia.org/wiki/СГС
11. Четырёхмерное пространство: Материал из Википедии. – https://ru.wikipedia.org/wiki/Четырёхмерное_пространство
12. Пространство-время: Материал из Википедии. – https://ru.wikipedia.org/wiki/Пространство-время
13. Брайан Грин. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории: Пер. с англ. / Общ. ред. В. О. Малышенко. – М.: Едиториал УРСС, 2004. – 288 с.
14. Сухонос С. И. Масштабная гармония Вселенной. – М.: Новый центр, 2002. – 312 с.
15. Александр Котлин. Как понять 10-ти мерное пространство? – http://www.proza.ru/2012/12/21/204
1. Вот что говорит об этом великий математик Гильберт: «вообразим три системы вещей, которые мы назовём точками, прямыми и плоскостями. Что это за »вещи» – мы не знаем, да и незачем нам это знать. Было бы даже греховно стараться это узнать».
2. На самом деле размерность пространства определяется не числом мифических, другими словами абстрактных «осей», а числом допустимых (для данного пространства) направлений движения, например: вперёд-назад, влево-вправо, вверх-вниз для пространства 3-х измерений.
3. Использование древних (возрастом 2500 лет) математических абстракций непрерывности, бесконечности и нуля (как порождения бесконечности) в задачах исследования многомерных пространств можно сравнить с применением топора для раскалывания атомных ядер в физике.
4. То, что наука называет полями (например, электромагнитное поле) или никак не называет (например, мир чувств, мир мыслей, . ), на самом деле являются реально существующими пространствами высшей размерности.
5. Прежде всего, это касается моделей многомерных пространств с координатными осями, скрученными в колечки, трубочки и бублички, которые рассматриваются в рамках так называемой «Теории струн».
6. Строго говоря, камни могут двигаться в 3-х направлениях: перемещаться ледниками, погружаться под воду, выходить из глубин океана на поверхность суши, разрушаться под воздействием волн или атмосферы. Однако эти движения происходят по нашим меркам очень медленно, со скоростью смены геологических эпох. То есть сущности «нулевой» размерности живут в других временных рамках, или с другой скоростью, не сопоставимой с той, что привычна нам.
7. Если быть объективными, то надо признать, что растения не одномерны, а трёхмерны, так как способны перемещаться не только вверх, но и в пределах поверхности: в результате размножения (корнями или семенами). Однако такое движение будет проявлено лишь через год (при неблагоприятных обстоятельствах – через несколько лет), то есть со скоростью значительно меньшей скорости роста растения.
8. Отметим, что двухмерные сущности тоже способны к перемещению в дополнительном, третьем направлении. Например, попадая на тело животных или человека, или могут быть перемещены вверх/вниз потоками воды или порывами ветра. Однако та же объективность требует признать движение в 3-м направлении исключением, не свойственным двумерным сущностям от природы.
27 мая 2012 года
17 июня 2012 года
3 июля 2012 года
17 октября 2012 года
21 декабря 2012 года
- Многомерные пространства — 3D, 4D и другие измерения
- Многомерные пространства
- Что такое четырёхмерное пространство («4D»)?
- Представление других измерений
- От 2D к 3D
- От 3D к 4D
- Что такое гиперкуб? Построение тессеракта
- Виды гиперкубов и их названия
- Как насчет 10D?
- Главы 3 и 4: Четвертое измерение
- 1. Людвиг Шлефли и другие
- 2. Идея размерности
- 3. Многогранники Шлефли
- 4. «Видеть» в 4-х измерениях
- 5. «Видеть» в четырёх измерениях: стереографическая проекция
- 💥 Видео
Видео:Фигуры четвёртого измеренияСкачать
Многомерные пространства — 3D, 4D и другие измерения
Илья Щуров, Jason Hise, ashgrowen, Анатолий Белов
Видео:Как бы вы изменились в четырехмерном пространстве?Скачать
Многомерные пространства
Что такое четырёхмерное пространство («4D»)?
Представление других измерений
Что такое гиперкуб? Построение тессеракта
Виды гиперкубов и их названия
Как насчет 10D?
Многомерные пространства — миф или реальность? Большинству из нас, или, возможно, всем нам невозможно представить мир, состоящий из более чем трех пространственных измерений. Правильно ли утверждение, что такой мир не может существовать? Или просто человеческий разум не способен вообразить дополнительные измерения — измерения, которые могут оказаться такими же реальными, как и другие вещи, которые мы не можем увидеть?
Мы достаточно часто слышим что-нибудь вроде «трехмерное пространство», или «многомерное пространство», или «четырехмерное пространство». Возможно, вы знаете, что мы живем в четырехмерном пространстве-времени. Что это означает и почему это интересно, почему математики и не только математики изучают такие пространства?
Об авторах
Илья Щуров — кандидат физико-математических наук, доцент кафедры высшей математики НИУ ВШЭ.
Jason Hise — Physics programmer at Ready at Dawn Studios, 4D geometry enthusiast. Автор анимированных моделей, представленных в данной статье.
ashgrowen — пикабушник, проиллюстрировавший в этой статье построение тессеракта и гиперкуба.
Давайте начнем с простого — начнем с одномерного пространства. Представим себе, что у нас есть город, который расположен вдоль дороги, и в этом городе есть только одна улица. Тогда мы можем каждый дом на этой улице закодировать одним числом — у дома есть номер, и этот номер однозначно определяет, какой дом имеется в виду. Люди, которые живут в таком городе, — можно считать, что они живут в таком одномерном пространстве. Жить в одномерном пространстве довольно скучно, и люди обычно живут не в одномерном пространстве.
Например, если мы говорим про города, то можно перейти от одномерного пространства к двумерному. Примером двумерного пространства является плоскость, а если мы продолжим нашу аналогию с городами, то это город, в котором можно расчертить улицы, допустим, перпендикулярно друг другу, как это сделано в Нью-Йорке, в центре Нью-Йорка. Там есть «стрит» и авеню, каждая из которых имеет свой номер, и вы можете задавать местоположение на плоскости, задавать два числа. Опять же, все мы знаем декартову систему координат, знакомую со школы, — каждая точка задается двумя числами. Это пример двумерного пространства.
Но если мы говорим про город типа центра Нью-Йорка, то на самом деле он является трехмерным пространством, потому что вам мало задать, например, конкретный дом, пусть даже вы зададите его пересечением какой-нибудь «стрит» и какой-нибудь авеню, — вам нужно будет задать еще и этаж, на котором находится нужная вам квартира. Это даст вам третье измерение — высоту. У вас получится трехмерное пространство, в котором каждая точка задается тремя числами.
Вопрос: что такое четырехмерное пространство? Представить его себе не так-то просто, но можно думать о том, что это пространство, в котором каждая точка задается четырьмя числами. На самом деле мы с вами действительно живем в четырехмерном пространстве-времени, потому что события нашей жизни кодируются как раз четырьмя числами — помимо положения в пространстве, есть еще и время. Например, если вы назначаете свидание, то вы можете сделать это так: вы можете указать три числа, которые будут соответствовать точке в пространстве, и обязательно указать время, которое обычно задается в часах, минутах, секундах, но можно было бы закодировать его одним числом. Например, количество секунд, прошедших с определенной даты, — это тоже одно число. Таким образом получается четырехмерное пространство-время.
Представить себе геометрию этого четырехмерного пространства-времени не очень просто. Например, мы с вами привыкли к тому, что в нашем обычном трехмерном пространстве две плоскости могут пересекаться по прямой либо быть параллельными. Но не бывает такого, чтобы две плоскости пересекались в одной точке. Две прямые могут пересечься в одной точке, а на плоскости не могут в трехмерном пространстве. А в четырехмерном пространстве две плоскости могут и чаще всего пересекаются в одной точке. Можно представлять себе, хотя это уже совсем сложно, пространство большей размерности. На самом деле математики, когда работают с пространствами высокой размерности, чаще всего говорят просто: допустим, пятимерное пространство — это пространство, в котором точка задается пятью числами, пятью координатами. Безусловно, математики разработали разные методы, которые позволяют понимать что-то о геометрии такого пространства.
Почему это важно? Зачем понадобились такие пространства? Во-первых, четырехмерное пространство нам важно, потому что оно применяется в физике, потому что мы в нем живем. А зачем нужны пространства более высоких измерений? Давайте представим себе, что мы изучаем какие-то объекты, которые обладают большим количеством параметров. Например, мы изучаем страны, и у каждой страны есть территория, количество населения, внутренний валовой продукт, количество городов, какие-нибудь коэффициенты, индексы, что-нибудь такое. Мы можем представлять себе каждую страну в виде одной точки в каком-то пространстве достаточно высокой размерности. И оказывается, что с математической точки зрения это правильный способ об этом думать.
В частности, переход к геометрии многомерного пространства позволяет анализировать разные сложные объекты, обладающие большим количеством параметров.
Для того чтобы изучать такие объекты, используются методы, разработанные в науке, которая называется линейная алгебра. Несмотря на то, что она алгебра, на самом деле это наука о геометрии многомерных пространств. Конечно, поскольку представить их себе довольно тяжело, математики используют формулы, для того чтобы как раз изучать такие пространства.
Представить себе четырех-, пяти- или шестимерное пространство довольно сложно, но математики не боятся трудностей, и им мало даже стомерных пространств. Математики придумали бесконечномерное пространство — пространство, содержащее бесконечное количество измерений. В качестве примера такого пространства можно привести пространство всех возможных функций, заданных на отрезке или прямой.
Оказывается, что методы, которые были разработаны для конечномерных пространств, во многом переносятся и на случаи чрезвычайно сложных с точки зрения просто попытки их все представить пространств.
У линейной алгебры есть многочисленные приложения не только в математике, но и в самых разных науках, начиная c физики и заканчивая, например, экономикой или политической наукой. В частности, линейная алгебра является основой для многомерной статистики, которая как раз используется для вычленения связей между различными параметрами в каких-то массивах данных. В частности, популярный ныне термин Big Data зачастую связывается с решением задач по обработке данных, которые представляются именно большим количеством точек в пространстве какой-то конечной размерности. Чаще всего такие задачи можно переформулировать и разумно воспринимать именно в геометрических терминах.
Со школьных лет математика разделяется на алгебру и геометрию. Но на самом деле, если мы задумаемся о том, как устроена современная математика, то мы поймем, что те задачи, которые сейчас решаются, в частности, с применением методов линейной алгебры, на самом деле являются очень отдаленным продолжением тех задач, над которыми задумывались многие тысячи лет назад, например Пифагор или Евклид, разрабатывая ту самую школьную геометрию, которая сейчас есть в любом школьном учебнике. Удивительно, что задача по анализу больших данных оказывается в некотором смысле потомком, казалось бы, совсем бессмысленных — по крайней мере с практической точки зрения — упражнений древних греков по рисованию прямых или окружностей на плоскости или мысленному проведению прямых или плоскостей в трехмерном пространстве.
Видео:4D фигурыСкачать
Что такое четырёхмерное пространство («4D»)?
Тессерракт — четырехмерный куб
Всем знакомо сокращение 3D, означающее «трёхмерный» (буква D — от слова dimension — измерение). Например, выбирая в кинотеатре фильм с пометкой 3D, мы точно знаем: для просмотра придётся надеть специальные очки, но зато картинка будет не плоской, а объёмной. А что такое 4D? Существует ли «четырёхмерное пространство» в реальности? И можно ли выйти в «четвёртое измерение»?
Чтобы ответить на эти вопросы, начнём с самого простого геометрического объекта — точки. Точка нульмерна. У неё нет ни длины, ни ширины, ни высоты.
Сдвинем теперь точку по прямой на некоторое расстояние. Допустим, что наша точка — остриё карандаша; когда мы её сдвинули, она прочертила отрезок. У отрезка есть длина, и больше никаких измерений: он одномерен. Отрезок «живёт» на прямой; прямая является одномерным пространством.
Тессеракт — четырехмерный куб
Возьмём теперь отрезок и попробуем его сдвинуть так, как раньше точку. Можно представить себе, что наш отрезок — это основание широкой и очень тонкой кисти. Если мы выйдем за пределы прямой и будем двигаться в перпендикулярном направлении, получится прямоугольник. У прямоугольника есть два измерения — ширина и высота. Прямоугольник лежит в некоторой плоскости. Плоскость — это двумерное пространство (2D), на ней можно ввести двумерную систему координат — каждой точке будет соответствовать пара чисел. (Например, декартова система координат на школьной доске или широта и долгота на географической карте.).
Если сдвинуть прямоугольник в направлении, перпендикулярном плоскости, в которой он лежит, получится «кирпичик» (прямоугольный параллелепипед) — трёхмерный объект, у которого есть длина, ширина и высота; он расположен в трёхмерном пространстве, в таком, в каком живём мы с вами. Поэтому мы хорошо представляем себе, как выглядят трёхмерные объекты. Но если бы мы жили в двумерном пространстве — на плоскости, — нам пришлось бы изрядно напрячь воображение, чтобы представить себе, как можно сдвинуть прямоугольник, чтобы он вышел из той плоскости, в которой мы живём.
Тессеракт — четырехмерный куб
Представить себе четырёхмерное пространство для нас также довольно непросто, хотя очень легко описать математически. Трёхмерное пространство — это пространство, в котором положение точки задаётся тремя числами (например, положение самолёта задаётся долготой, широтой и высотой над уровнем моря). В четырёхмерном же пространстве точке соответствует четвёрка чисел-координат. «Четырёхмерный кирпич» получается сдвигом обычного кирпичика вдоль какого-то направления, не лежащего в нашем трёхмерном пространстве; он имеет четыре измерения.
На самом деле мы сталкиваемся с четырёхмерным пространством ежедневно: например, назначая свидание, мы указываем не только место встречи (его можно задать тройкой чисел), но и время (его можно задавать одним числом, например количеством секунд, прошедших с определенной даты). Если посмотреть на настоящий кирпич, у него есть не только длина, ширина и высота, но ещё и протяженность во времени — от момента создания до момента разрушения.
Физик скажет, что мы живём не просто в пространстве, а в пространстве-времени; математик добавит, что оно четырёхмерно. Так что четвёртое измерение ближе, чем кажется.
Видео:Вращение четырёхмерной камеры в четырёхмерном пространстве с отображением треугольникаСкачать
Представление других измерений
От 2D к 3D
Ранняя попытка объяснить концепцию дополнительных измерений появилась в 1884 году с публикацией романа о плоской земле Эдвина А. Эббота «Флатландия: романтика множества измерений«. Действие в романе разворачивается в плоском мире, называемом «Флатландия», а повествование ведется от лица жителя этого мира — квадрата. Однажды во сне квадрат оказывается в одномерном мире — Лайнландии, жители которой (треугольники и другие двумерные объекты представлены в виде линий) и пытается объяснить правителю этого мира существование 2-го измерения, однако, приходит к выводу о том, что его невозможно заставить выйти за рамки мышления и представления только прямых линий.
Квадрат описывает его мир как плоскость, населенную линиями, кругами, квадратами, треугольниками и пятиугольниками.
Сфера, с точки зрения Квадрата — Окружность. │ commons.wikimedia.org
Однажды перед квадратом появляется шар, но его суть он не может постичь, так как квадрат в своем мире может видеть только срез сферы, только форму двумерного круга.
Сфера пытается объяснить квадрату устройство трехмерного мира, но квадрат понимает только понятия «вверх/вниз» и «лево/право», он не способен постичь понятия «вперед/назад».
Непостижимая Квадратом тайна третьего измерения на примере прохождения сферы через плоскость. Герой наблюдает уменьшение Окружности до точки и её исчезновение. │ commons.wikimedia.org
Только после того, как сфера вытащит квадрат из его двумерного мира в свой трехмерный мир, он наконец поймет концепцию трех измерений. С этой новой точки зрения квадрат становится способен видеть формы своих соотечественников.
Квадрат, вооруженный своим новым знанием, начинает осознавать возможность существования четвертого измерения. Также он приходит к мысли, что число пространственных измерений не может быть ограничено. Стремясь убедить сферу в этой возможности, квадрат использует ту же логику, что и сфера, аргументирующая существование трех измерений. Но теперь из них двоих становится «близорукой» сфера, которая не может понять этого и не принимает аргументы и доводы квадрата — так же, как большинство из нас «сфер» сегодня не принимают идею дополнительных измерений.
От 3D к 4D
Нам сложно принять эту идею, потому что, когда мы пытаемся представить даже одно дополнительное пространственное измерение — мы упираемся в кирпичную стену понимания. Похоже, что наш разум не может выйти за эти границы.
Представьте себе, например, что вы находитесь в центре пустой сферы. Расстояние между вами и каждой точкой на поверхности сферы равно. Теперь попробуйте двигаться в направлении, которое позволяет вам отойти от всех точек на поверхности сферы, сохраняя при этом равноудаленность. Вы не сможете этого сделать..
Житель Флатландии столкнулся бы с такой же проблемой, если бы он находился в центре круга. В его двумерном мире он не может находиться в центре круга и двигаться в направлении, которое позволяет ему оставаться равноудаленными каждой точке окружности круга, если только он не перейдет в третье измерение. Увы, у нас нет проводника в четырехмерное пространство как в романе Эббота, чтобы показать нам путь к 4D.
Видео:Парадоксы в ЧЕТЫРЕХМЕРНОМ пространствеСкачать
Что такое гиперкуб? Построение тессеракта
Виды гиперкубов и их названия
1. Точка — нулевое измерение
2. Отрезок — одномерное пространство
3. Квадрат — двумерное пространство (2D)
4. Куб — трёхмерное пространство (3D)
5. Тессеракт — четырёхмерное пространство (4D)
6. Пентеракт — пятимерное пространство (5D)
7. Хексеракт — шестимерное пространство (6D)
8. Хептеракт — семимерное пространство (7D)
9. Октеракт — восьмимерное пространство (8D)
10. Энтенеракт — девятимерное пространство (9D)
11. Декеракт — десятимерное пространство (10D)
Гиперкуб — это обобщающее название куба в производном числе измерений. Всего измерений десять, плюс точка (нулевое измерение).
Соответственно, существует одиннадцать видов гиперкуба. Рассмотрим построение тессеракта — гиперкуба четвертого измерения:
Для начала построим точку А (рис. 1):
После, соединим ее с точкой В. Получим вектор АВ (рис. 2):
Построим вектор, параллельный вектору АВ, и назовем его CD. Соединив начала и концы векторов, получим квадрат ABDC (рис. 3):
Теперь построим еще один квадрат A1B1D1C1, который лежит в параллельной плоскости. Соединив точки подобным образом, получим куб (рис. 4):
У нас есть куб. Представьте, что положение куба в трехмерном пространстве с течением времени изменилось. Зафиксируем его новое местоположение (рис 5.):
Рис. 5 Измененное положение куба в пространстве
А теперь, мы проводим вектора, которые соединяют местоположение точек в прошлом и в настоящем. Получаем тессеракт (рис. 6):
Рис. 6 Тессеракт (построение)
Подобным образом строятся остальные гиперкубы, конечно же учитывается смысл пространства, в котором гиперкуб находится.
Видео:Треугольник в 4D-пространстве [8K60FPS]Скачать
Как насчет 10D?
В 1919 году польский математик Теодор Калуца предположил, что существование четвертого пространственного измерения может увязать между собой общую теорию относительности и электромагнитную теорию. Идея, впоследствии усовершенствованная шведским математиком Оскаром Кляйном, заключалась в том, что пространство состояло как из «расширенных» измерений, так и из «свернутых» измерений. Расширенные измерения — это три пространственных измерения, с которыми мы знакомы, и свернутое измерение находится глубоко в расширенных размерах. Эксперименты позже показали, что свернутое измерение Калуцы и Кляйна не объединило общую теорию относительности и электромагнитную теорию, как это первоначально предполагалось, но спустя десятилетия теоретики теории струн нашли эту идею полезной, даже необходимой.
Математика, используемая в теории суперструн, требует не менее 10 измерений. То есть для уравнений, описывающих теорию суперструн и для того чтобы связать общую теорию относительности с квантовой механикой, для объяснения природы частиц, для объединения сил и т. д. — необходимо использовать дополнительные измерения. Эти измерения, по мнению теоретиков струн, завернуты в свернутое пространство, изначально описанное Калуцей и Кляйном.
Круги представляют собой дополнительный пространственный размер, свернутый в каждую точку нашего знакомого трехмерного пространства. │ WGBH / NOVA
Чтобы расширить скрученное пространство, чтобы включить эти добавленные размеры, представьте, что круги Калуцы-Клейна заменяются сферами. Вместо одного добавленного измерения мы имеем два, если рассматривать только поверхности сфер и три, если учесть пространство внутри сферы. Получилось всего шесть измерений. Так где же другие, которые требует теория суперструн?
Оказывается, что до того, как появилась теория суперструн, два математика Эудженио Калаби из Университета Пенсильвании и Шин-Тунг Яу из Гарвардского университета описали шестимерные геометрические формы. Если мы заменим сферы в скрученном пространстве этими формами Калаби-Яу, мы получим 10 измерений: три пространственных, а также шестимерные фигуры Калаби-Яу.
Шестимерные формы Калаби-Яу могут объяснять дополнительные размеры, требуемые теорией суперструн. │ WGBH / NOVА
Приверженцы теории струн делают ставку на то, что дополнительные измерения действительно существуют. На самом деле, уравнения, описывающие теорию суперструн, предполагают вселенную с не менее чем 10 измерениями. Но даже физикам, которые все время думают о дополнительных пространственных измерениях сложно описать как они могут выглядеть, или как люди могли бы приблизиться к их пониманию.
Если теория суперструн будет доказана и идея мира, состоящего из 10 или более измерений, подтвердится, то появится ли когда-нибудь объяснение или визуальное представление более высоких измерений, которые сможет постичь человеческий разум? Ответ на этот вопрос навсегда может стать отрицательным, если только какая-то четырехмерная жизненная форма не «вытащит» нас из нашего трехмерного мира и не даст нам увидеть мир с ее точки зрения.
Видео:Парадоксы в ЧЕТЫРЕХМЕРНОМ пространствеСкачать
Главы 3 и 4: Четвертое измерение
Математик Людвиг Шлефли рассказывает нам об объектах в четвертом измерении и демонстрирует нам парад правильных многогранников в размерности 4: странных объектов с 24, 120 и даже 600 гранями!
Видео:ПЕНТАХОР (4D-ТРЕУГОЛЬНИК) В ЧЕТЫРЁХМЕРНОМ ПРОСТРАНСТВЕ | 4D | [8K60FPS]Скачать
1. Людвиг Шлефли и другие
Мы долго колебались, прежде чем выбрать ведущего этой главы. Идея четвертого измерения не исходит только от одного человека и потребовалось творчество многих, чтобы она окончательно упрочилась и ассимилировалась в математике. Среди предшественников можно привести гениального Римана, который представит заключительную главу и который, без сомнения, имел очень четкое представление о четвертом измерении с середины девятнадцатого века.
Но мы предоставили слово Людвигу Шлефли (1814-1895), главным образом потому, что его оригинальный ум почти забыт сегодня, даже среди математиков. Он одним из первых выдвинул идею о том, что даже если наше физическое пространство, как представляется, имеет размерность 3, то ничто не может помешать нам представлять себе пространство размерности 4, или даже доказывать геометрические теоремы о четырехмерных математических объектах. Для него четвертое измерение было чистой абстракцией, но после нескольких лет работы, он должно быть испытывать большую легкость в четырех измерениях, нежели в трех! Его главная работа «Theorie der vielfachen Kontinuität» опубликована в 1852 году. Надо сказать, что лишь немногие в то время осознали важность этого трактата. Лишь в начале двадцатого столетия математики поняли идею этой монументальной работы. Больше о Шлефли можно почитать здесь или здесь.
Даже внутри математического сообщества, четвертое измерение сохраняло аспекты тайны и невозможности в течение многих лет. Широкой публике четвертое измерение часто напоминает о научной фантастике, полной паранормальных явлений, или, иногда о теории относительности Эйнштейна: «четвертое измерение — это время, не так ли?» Однако, это только путаница между вопросами математики и физики. Мы коротко вернемся к этому позднее. Сначала давайте попытаемся представить четвертое измерение, как это сделал Шлефли — как чистое творение разума!
Щёлкните по рисунку для просмотра фильма. |
Простое имя | Имя | Вершин | Ребер | 2D Грани | 3D Грани |
Симплекс | Пентахор | 5 | 10 | 10 треугольников | 5 tétraèdres |
Гиперкуб | Тессеракт | 16 | 32 | 24 квадрата | 8 кубов |
16 (Гипероктаэдр) | Гексадекахор | 8 | 24 | 32 треугольника | 16 тетраэдров |
24 | Икоситетрахорон | 24 | 96 | 96 треугольников | 24 октаэдра |
120 | Гекатоникосахор | 600 | 1200 | 720 пятиугольников | 120 додекаэдров |
600 | Гексакосизор | 120 | 720 | 1200 треугольников | 600 тетраэдров |
Щёлкните по рисунку для просмотра фильма. |
Щёлкните по рисунку для просмотра фильма. |
S 0 | S 1 | S 2 | S 3 |
Щёлкните по рисунку для просмотра фильма. |