Треугольник симметричный началу координат

Осевая и центральная симметрия

Треугольник симметричный началу координат

О чем эта статья:

Видео:Построить треугольник симметричный оси абсцисс и оси ординат. Номер105 Глава 6. Математика 6Скачать

Построить треугольник симметричный оси абсцисс и оси ординат. Номер105 Глава 6. Математика 6

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Треугольник симметричный началу координат

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Треугольник симметричный началу координат

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Видео:Осевая симметрия, как начертить треугольники симметричноСкачать

Осевая симметрия, как начертить треугольники симметрично

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

Треугольник симметричный началу координат

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

Треугольник симметричный началу координат

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

Треугольник симметричный началу координат

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

Треугольник симметричный началу координат

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать

8 класс, 9 урок, Осевая и центральная симметрия

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Треугольник симметричный началу координат

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

Треугольник симметричный началу координат

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

Треугольник симметричный началу координат

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Видео:Видеоурок "Координатная плоскость, координата точки"Скачать

Видеоурок "Координатная плоскость, координата точки"

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Треугольник симметричный началу координат

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Треугольник симметричный началу координат

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

Видео:6 класс, 26 урок, СимметрияСкачать

6 класс, 26 урок, Симметрия

Урок по теме «Симметрия на координатной плоскости»

Разделы: Математика

  • SMART-BOARD.
  • ПК “КМ-школа”.
  • Мультимедийный проектор.
  • Индивидуальные планшетки, маркер, ватный диск (для удаления и исправления записей).
  • Два листа А4 на каждой парте для работы в группах и в парах.
  • Изображение парусника на миллиметровой бумаге для самостоятельной работы в двух вариантах.
  • Основные цели урока: тренировать способность к определению координат точек и построению точек по их координатам; выявить взаимосвязь между координатами точек симметричных относительно начала координат и повторить взаимосвязь между координатами точек симметричных относительно координатных осей.

    Перед началом урока учитель собирает творческое домашнее задание: на альбомных листах учащиеся оформляли свои рисунки по координатам.

    Ход урока

    1. Самоопределение к деятельности.

    – Я вижу у вас хорошее настроение и боевой настрой. Они нам очень пригодятся. Сегодня у нас пройдёт необычный урок – Морское путешествие. Дело в том, что вчера на сайте нашей школы появился сигнал бедствия от Робинзона Крузо. Он просит помочь ему построить парусник, на котором он смог бы вернуться домой. Чтобы спасти его, нам надо преодолеть большое расстояние. Давайте посмотрим на карту нашего путешествия.

    Треугольник симметричный началу координат

    Маршрут: Бухта знаний – Залив Исторический – Остров сокровищ – Школа Робинзона Крузо – Мыс Настроения – Бухта знаний.

    – Итак, мы отправляемся в путь, но чтобы не сбиться с маршрута, преодолеть все рифы и подводные течения, нам необходимо внимательно следить за координатами нашего корабля. Давайте вспомним, какую тему мы недавно начали изучать? (Координатная плоскость).

    – Чтобы преодолеть залив Исторический и не разбиться о его скалистые берега, давайте вспомним как давно появилось понятие координатной плоскости, и кто впервые ввёл его? ( Рене Декарт.)

    – Что вам о нём известно? Тогда давайте обратимся к нашей энциклопедии.

    Треугольник симметричный началу координат

    Треугольник симметричный началу координат

    – Из чего же состоит координатная плоскость?

    Вызвать ученика. (Весь класс помогает: две пересекающиеся под прямым углом прямые – оси абсцисс и ординат, точка их пересечения – начало отсчёта, стрелочки – указывают положительное направление осей, единичный отрезок.) Ученик заполняет маркером пустые места на координатной плоскости. Оценка.

    Треугольник симметричный началу координат

    – Сколько углов образовалось при построении координатной плоскости? (четыре) Как они называются? (координатные углы или координатные четверти). Покажите, как они расположены.

    Ученик нумерует маркером углы и указывает координаты точек в этих углах схематично с помощью знаков “+” и “-”.

    Треугольник симметричный началу координат

    – Как с помощью неравенств записать знаки координат точек в каждом из углов? Ученики обсуждают в парах и предлагают свои варианты, из которых выбирается верный.

    I. x>0, y>0
    II. x 0
    III. x 0, y 27.01.2012

    Видео:Как найти точку, симметричную точке А(3;4) относительно начала координат. Как решать. Простой способСкачать

    Как найти точку, симметричную точке А(3;4) относительно начала координат. Как решать. Простой способ

    Решение на Номер 6.30 из ГДЗ по алгебре за 7 класс: Мордкович А.Г.

    Условие

    Решение 1

    Треугольник симметричный началу координат

    Решение 2

    Треугольник симметричный началу координат

    Поиск в решебнике

    Видео:Построение треугольника, симметричного данному относительно точки, принадлежащей его сторонеСкачать

    Построение треугольника, симметричного данному относительно точки, принадлежащей его стороне

    Популярные решебники

    Издатель: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2013г.

    Издатель: А.Г. Мордкович, 2013г.

    Издатель: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. 2015г.

    🎦 Видео

    Как построить точки в системе координат OXYZСкачать

    Как построить точки в системе координат OXYZ

    Построить проекции линии и точек на ней по заданным координатам. Начертательная геометрияСкачать

    Построить проекции линии и точек на ней по заданным координатам. Начертательная геометрия

    Симметрия относительно прямой (осевая симметрия). Пример 2Скачать

    Симметрия относительно прямой (осевая симметрия). Пример 2

    Симметрия точек на координатной плоскостиСкачать

    Симметрия точек на координатной плоскости

    Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать

    Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)

    Построение треугольника в трёх проекцияхСкачать

    Построение треугольника в трёх проекциях

    Математика без Ху!ни. Уравнение плоскости.Скачать

    Математика без Ху!ни. Уравнение плоскости.

    Как построить точку, симметричную точке А(5;-3) относительно оси Оу Как решить задачу по геометрииСкачать

    Как построить точку, симметричную точке А(5;-3) относительно оси Оу Как решить задачу по геометрии

    Уравнения стороны треугольника и медианыСкачать

    Уравнения стороны треугольника и медианы

    9 класс, 12 урок, Теорема о площади треугольникаСкачать

    9 класс, 12 урок, Теорема о площади треугольника

    Вычисляем высоту через координаты вершин 1Скачать

    Вычисляем высоту через координаты вершин  1

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

    Прямоугольная система координат. Координатная плоскость. 6 класс.Скачать

    Прямоугольная система координат. Координатная плоскость. 6 класс.
    Поделиться или сохранить к себе: