Треугольником Паскаля называется бесконечная треугольная таблица, в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним в предшествующей строке.
№ | Треугольник Паскаля |
0 | 1 |
1 | 1 1 |
2 | 1 2 1 |
3 | 1 3 3 1 |
4 | 1 4 6 4 1 |
5 | 1 5 10 10 5 1 |
6 | 1 6 15 20 15 6 1 |
… | … |
Треугольник Паскаля можно получить из таблицы натуральных степеней бинома x + y
- Натуральные степени бинома x + y
- Свойства треугольника Паскаля
- Определения
- Написать разложение вида: (x + y) 7
- Треугольник Паскаля
- Построение треугольника Паскаля
- Суть треугольной последовательности
- История открытия
- Удивительные свойства
- Построение треугольника Паскаля
- Примеры из реальной жизни
- Подсчет количества способов
- Определение вероятности
- Заключение
- 🔍 Видео
Натуральные степени бинома x + y
№ | Степень | Разложение в сумму одночленов |
0 | (x + y) 0 = | 1 |
1 | (x + y) 1 = | 1x + 1y |
2 | (x + y) 2 = | 1x 2 + 2xy + 1y 2 |
3 | (x + y) 3 = | 1x 3 + 3x 2 y + 3xy 2 + 1y 3 |
4 | (x + y) 4 = | 1x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + 1y 4 |
5 | (x + y) 5 = | 1x 5 + 5x 4 y + 10x 3 y 2 + 10x 2 y 3 + 5xy 4 + 1y 5 |
6 | (x + y) 6 = | 1x 6 + 6x 5 y + 15x 4 y 2 + 20x 3 y 3 + 15x 2 y 4 + 6xy 5 + 1y 6 |
… | … | … |
Свойства треугольника Паскаля
- Сумма чисел n-ной строки (отсчет ведется с нуля) треугольника Паскаля равна 2 n . Действительно, при переходе от каждой строки к следующей сумма членов удваивается, а для нулевой строки она равна 2 0 =1 .
- Все строки треугольника Паскаля симметричны. Потому что при переходе от каждой строки к следующей свойство симметричности сохраняется, а нулевая строка симметрична.
- Каждое число в треугольнике Паскаля равно Cn k , где n — номер строки, k — номер (отсчет ведется с нуля) элемента в строке.
- Каждое число треугольника Паскаля, уменьшенное на единицу, равно сумме всех чисел, заполняющих параллелограмм, ограниченный диагоналями, на пересечении которых находится этот элемент.
- Вдоль диагоналей, параллельных сторонам треугольника, выстроены треугольные числа, тетраэдрические числа и т.д.
- Если посчитать для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел, то получится соответствующее число Фибоначчи.
Определения
Треугольными числами называется количество шаров, которые можно выложить в виде равностороннего треугольника.
Тетраэдрическими числами называется количество шаров, которые можно выложить в виде правильного тетраэдра.
Последовательность f1 = f2 = 1 , fn = fn−1 + fn−2 при n>2 называется последовательностью Фибоначчи, а ее члены — числами Фибоначчи.
Написать разложение вида: (x + y) 7
Воспользовавшись строкой треугольника Паскаля с номером 6 и применив основное свойство треугольника Паскаля, получим строку с номером 7:
Видео:ТРЕУГОЛЬНИК ПАСКАЛЯ 😊 ЧАСТЬ I #shorts #математика #егэ #задачи #задачаналогику #егэ2022 #огэ2022Скачать
Треугольник Паскаля
Если говорить о треугольнике Паскаля, то его можно охарактеризовать как бесконечную таблицу. В данной таблице используются биномиальные коэффициенты. А сама таблица представлена в виде треугольника. Чтобы произвести расчет, можно использовать калькулятор, где указывается только количество строк. При самостоятельном расчете потребуется время и знание формул.
Как уже говорилось, данный треугольник представляет собой таблицу, начинается которая с нулевой строки. Вершина таблицы и боковые стороны каждой строки имеют единицы. Остальные числа (в середине) равны сумме 2-ух чисел, которые находятся в предыдущей строке (над ними).
В данном случае используются натуральные степени бинома: х+у
Для нулевой строки: (x + y)° =
Для первой: (x + y)¹ =
Для второй: (x + y)² =
И так далее.
Если разложить в сумму одночленов, получим для нулевой: 1
Для первой: 1x + 1y
Для второй: 1x² + 2xy + 1y²
Треугольника Паскаля, для расчетов используется формула:
где
Видео:Треугольник ПаскаляСкачать
Построение треугольника Паскаля
Треугольник Паскаля — элегантный математический треугольник, представляющий собой бесконечную таблицу биноминальных коэффициентов. Таблица иллюстрирует скрытые соотношения между числами, которые естественным образом возникают в теории чисел, комбинаторике, теории вероятностей и алгебре.
Видео:Треугольник ПаскаляСкачать
Суть треугольной последовательности
Число 1 — важное число, а 11? Любопытно, что 11 × 11 = 121, 11 × 11 × 11 = 1331, а 11 × 11 × 11 × 11 = 14641. Если выстроить эти числа сверху вниз и представить их в виде отдельных цифр, то получится интересная формация:
Эти цифры — первые строки знаменитого треугольника Паскаля. Далее таблица строится по следующему принципу: по краям записываются единицы, а внутри ряда числа формируются путем суммы цифр, расположенных рядом выше слева и справа от искомых. Данная таблица знаменита в математике своей элегантностью, симметрией и неожиданными связями между числами. Связи таблицы с другими математическими сферами превратили треугольник Паскаля в Священный Грааль математики.
Видео:4.3 Треугольник Паскаля 1. "Поколение Python": курс для продвинутых. Курс StepikСкачать
История открытия
Считается, что таблица была открыта Блезом Паскалем в 1653 году, однако происхождение формации гораздо древнее. Первое упоминание о бесконечной треугольной таблице встречается в трудах индийских математиков 10-го века, а наиболее полная информация о треугольнике представлена в работе китайского математика Шицзе, опубликованной в 1303 году. Однако и Шизце лишь упомянул о формации, создателем же треугольника Паскаля считается китайский ученый Ян Хуэй, поэтому в Китае таблица биноминальных коэффициентов носит название «треугольник Хуэя».
Видео:Зачем нужен треугольник Паскаля (спойлер: для формул сокращённого умножения)Скачать
Удивительные свойства
Симметрия — очевидное свойство треугольника Паскаля. Если из верхней единицы провести вертикальную прямую, то числа справа и слева будут симметричны. Диагонали треугольника также симметричны. Диагонали вообще обладают рядом уникальных свойств. Если первая диагональ, как восточная, так и западная, представляет собой ряд сплошных единиц, то вторая — ряд натуральных чисел, третья — ряд треугольных чисел, а четвертая — тетраэдрических.
- Треугольные числа (1, 3, 6, 10…) — это числа, при помощи которых строятся плоские треугольники. Простыми словами, если в двухмерной игре вы захотите составить треугольник из круглых элементов, то вам понадобится выстроить элементы в количестве, советующему треугольным числам: сначала 6 кругов, потом 3, потом 1.
- Тетраэдрические числа (1, 4, 10, 20…) используются для построения объемных тетраэдров. Проще говоря, если вам понадобится сложить пушечные ядра аккуратной пирамидой, то в основании вам потребуется уложить 20 ядер, на них еще 10, сверху 4 и увенчать пирамиду одним верхним ядром.
Кроме того, если в треугольнике Паскаля четные числа заменить единицами, а нечетные — нулями, то получится треугольник Серпинского — известный фрактал, построенный польским математиком в начале 20 века.
Треугольник Паскаля также имеет удивительную связь с алгеброй. Если мы разложим бином Ньютона вида (1 + x) 2 , то получим 1 + 2x + x 2 . Если же это будет (1 + x) 3 , то в результате мы получим 1 + 3x + 3x 2 + x 3 . Если присмотреться, то биноминальные коэффициенты — это ни что иное как числа из соответствующего ряда треугольника Паскаля.
Видео:Бином Ньютона и треугольник Паскаля | Учитель года Москвы — 2020Скачать
Построение треугольника Паскаля
Треугольник Паскаля — это бесконечная таблица элементов. При помощи нашего калькулятора вы можете построить таблицу любой размерности, однако не рекомендуется использовать слишком большие числа (n>100), так как столь огромные таблицы не имеют практического применения, а онлайн-калькулятор строит их слишком долго. Помимо элегантных свойств, используемых для решения биноминальных уравнений или построения тетраэдрических последовательностей, таблица Паскаля находит применение в комбинаторике.
Видео:Треугольник ПаскаляСкачать
Примеры из реальной жизни
Подсчет количества способов
Если на кафедре работают 7 математиков, и троих из них нужно отправить на городскую олимпиаду, то сколькими способами можно это сделать? Это стандартная задача на комбинаторику, в котором важен порядок элементов, то есть вариант «Сидоров, Иванов и Петров» отличается от варианта «Иванов, Петров, Сидоров», хотя выбранная группа математиков одна и та же. Такая ситуация возникает в случае, если преподаватели должны участвовать в разных конкурсах. При «ручном» решении нам пришлось бы использовать стандартные формулы для комбинаторики, однако проще воспользоваться свойствами треугольника Паскаля.
Для ответа на вопрос нам достаточно построить треугольник с n = 10, найти седьмой ряд и третье число в нем. Таким образом, существует 35 способов объединить математиков для поездки на олимпиаду.
Определение вероятности
В корзине лежит 20 шаров, пронумерованных от 1 до 20. Наугад мы берем 3 шара. Какова вероятность, что мы вытащим шары с номерами 5, 12 и 13? Для решения этой задачи нам потребуется построить треугольник Паскаля с n = 20, после чего найти двадцатый ряд и третье число в нем. Вытащить три шара можно 1140 способами. Вероятность наступления нашего события составит 3 из 1140.
Видео:#26. Треугольник Паскаля как пример работы вложенных циклов | Python для начинающихСкачать
Заключение
Треугольник Паскаля — простая таблица, которая таит в себе огромное количество математических тайн. Члены рядов связаны с биноминальными коэффициентами, совершенными числами, числами Фибоначчи, тетраэдрическими и треугольными числами. Используйте наш калькулятор для построения сетки необходимой вам размерности для решения самых разных математических задач.
🔍 Видео
Числа сочетаний. Треугольник Паскаля | Ботай со мной #059 | Борис Трушин |Скачать
Несколько красивых свойств треугольника ПаскаляСкачать
Треугольник Паскаля Python. Коэффициенты для Бинома НьютонаСкачать
Как треугольник Паскаля поможет умножать без калькулятораСкачать
Математические секреты треугольника ПаскаляСкачать
8. От треугольника Паскаля до Дзета-функции (English subtitles)Скачать
Треугольник ПаскаляСкачать
РАЗБИРАЕМСЯ С ТРЕУГОЛЬНИКОМ ПАСКАЛЯ ЧАСТЬ II 😊 #shorts #математика #егэ #задачи #егэ2022 #огэ2022Скачать
Числа Фибоначчи и треугольник ПаскаляСкачать
БИНОМ Ньютона | треугольник ПаскаляСкачать
Применение треугольника Паскаля #shortsСкачать
ТРЕУГОЛЬНИК ПАСКАЛЯ, В УРАВНЕНИЯХСкачать