Треугольник опирается на дугу

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Углы, связанные с окружностью

Треугольник опирается на дугуВписанные и центральные углы
Треугольник опирается на дугуУглы, образованные хордами, касательными и секущими
Треугольник опирается на дугуДоказательства теорем об углах, связанных с окружностью

Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Треугольник опирается на дугу

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Треугольник опирается на дугу

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголТреугольник опирается на дугу
Вписанный уголТреугольник опирается на дугуВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголТреугольник опирается на дугуВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголТреугольник опирается на дугуДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголТреугольник опирается на дугуВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаТреугольник опирается на дугу

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Треугольник опирается на дугу

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Треугольник опирается на дугу

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Треугольник опирается на дугу

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Треугольник опирается на дугу

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Треугольник опирается на дугу

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Треугольник опирается на дугу

Видео:Вписанные и центральные углыСкачать

Вписанные и центральные углы

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиТреугольник опирается на дугуТреугольник опирается на дугу
Угол, образованный секущими, которые пересекаются вне кругаТреугольник опирается на дугуТреугольник опирается на дугу
Угол, образованный касательной и хордой, проходящей через точку касанияТреугольник опирается на дугуТреугольник опирается на дугу
Угол, образованный касательной и секущейТреугольник опирается на дугуТреугольник опирается на дугу
Угол, образованный двумя касательными к окружностиТреугольник опирается на дугуТреугольник опирается на дугу

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Треугольник опирается на дугу

Треугольник опирается на дугу

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Треугольник опирается на дугу

Треугольник опирается на дугу

Треугольник опирается на дугу

Треугольник опирается на дугу

Угол, образованный пересекающимися хордами хордами
Треугольник опирается на дугу
Формула: Треугольник опирается на дугу
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Треугольник опирается на дугу

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Треугольник опирается на дугу
Формула: Треугольник опирается на дугу
Угол, образованный касательной и секущей касательной и секущей
Формула: Треугольник опирается на дугу

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Треугольник опирается на дугу

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:ЕГЭ задание 16 Вписанные углыСкачать

ЕГЭ задание 16 Вписанные углы

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Треугольник опирается на дугу

Треугольник опирается на дугу

Треугольник опирается на дугу

Треугольник опирается на дугу

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Треугольник опирается на дугу

В этом случае справедливы равенства

Треугольник опирается на дугу

Треугольник опирается на дугу

Треугольник опирается на дугу

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Треугольник опирается на дугу

В этом случае справедливы равенства

Треугольник опирается на дугу

Треугольник опирается на дугу

Треугольник опирается на дугу

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Треугольник опирается на дугу

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Треугольник опирается на дугу

Треугольник опирается на дугу

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Треугольник опирается на дугу

Треугольник опирается на дугу

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Треугольник опирается на дугу

Треугольник опирается на дугу

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Треугольник опирается на дугу

Треугольник опирается на дугу

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Треугольник опирается на дугу

Треугольник опирается на дугу

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Треугольник опирается на дугу

Треугольник опирается на дугу

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Треугольник опирается на дугу

Треугольник опирается на дугу

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Треугольник опирается на дугу

Треугольник опирается на дугу

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Центральные и вписанные углы

Треугольник опирается на дугу

О чем эта статья:

Видео:№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. НайдитеСкачать

№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Треугольник опирается на дугу

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Треугольник опирается на дугу

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Решение задач на тему центральные и вписанные углы.Скачать

Решение задач на тему центральные и вписанные углы.

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Треугольник опирается на дугу

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Треугольник опирается на дугу

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Треугольник опирается на дугу

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Треугольник опирается на дугу

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Треугольник опирается на дугу

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Треугольник опирается на дугу

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Треугольник опирается на дугу

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Треугольник опирается на дугу

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Треугольник опирается на дугу

ㄥBAC + ㄥBDC = 180°

Видео:70 Теорема о вписанном углеСкачать

70 Теорема о вписанном угле

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Треугольник опирается на дугу

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Треугольник опирается на дугу

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Треугольник опирается на дугу

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:Вписанные и центральные углыСкачать

Вписанные и центральные углы

Окружность. Центральный и вписанный угол

Центральный угол — это угол, вершина которого находится в центре окружности.
Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.

На рисунке — центральные и вписанные углы, а также их важнейшие свойства.

Треугольник опирается на дугу
Итак, величина центрального угла равна угловой величине дуги, на которую он опирается.
Значит, центральный угол величиной в градусов будет опираться на дугу, равную , то есть круга. Центральный угол, равный , опирается на дугу в градусов, то есть на шестую часть круга.

Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.

Также для решения задач нам понадобится понятие «хорда».

Треугольник опирается на дугу
Равные центральные углы опираются на равные хорды.

1 . Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, — прямой.

2 . Центральный угол на больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Пусть центральный угол равен , а вписанный угол, опирающийся на ту же дугу, равен .

Треугольник опирается на дугу

Мы знаем, что .
Отсюда ,
.

Ты нашел то, что искал? Поделись с друзьями!

3 . Радиус окружности равен . Найдите величину тупого вписанного угла, опирающегося на хорду, равную . Ответ дайте в градусах.

Треугольник опирается на дугу

Пусть хорда равна . Тупой вписанный угол, опирающийся на эту хорду, обозначим .
В треугольнике стороны и равны , сторона равна . Нам уже встречались такие треугольники. Очевидно, что треугольник — прямоугольный и равнобедренный, то есть угол равен .
Тогда дуга равна , а дуга равна .
Вписанный угол опирается на дугу и равен половине угловой величины этой дуги, то есть .

4 . Хорда делит окружность на две части, градусные величины которых относятся как . Под каким углом видна эта хорда из точки , принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Треугольник опирается на дугу

Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки ?»
Представьте, что вы сидите в точке и вам необходимо видеть всё, что происходит на хорде . Так, как будто хорда — это экран в кинотеатре 🙂
Очевидно, что найти нужно угол .
Сумма двух дуг, на которые хорда делит окружность, равна , то есть

Отсюда , и тогда вписанный угол опирается на дугу, равную .
Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол равен .

🎬 Видео

🔴 Найдите вписанный угол, опирающийся на дугу ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите вписанный угол, опирающийся на дугу ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Как работают вписанные углы? 📐 #shorts #умскул_профильнаяматематика #никитасалливан #егэпрофильСкачать

Как работают вписанные углы? 📐 #shorts #умскул_профильнаяматематика #никитасалливан #егэпрофиль

Геометрия 8 класс (Урок№27 - Теорема о вписанном угле.)Скачать

Геометрия 8 класс (Урок№27 - Теорема о вписанном угле.)

Задача 6 №27885 ЕГЭ по математике. Урок 122Скачать

Задача 6 №27885 ЕГЭ по математике. Урок 122

Геометрия. Теорема о вписанном углеСкачать

Геометрия. Теорема о вписанном угле

Вписанный угол - 1Скачать

Вписанный угол - 1

Тупоугольный треугольник для острого умаСкачать

Тупоугольный треугольник для острого  ума

Центральные и вписанные углы.Скачать

Центральные и вписанные углы.

Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.
Поделиться или сохранить к себе: