Треугольник образованный основаниями биссектрис

Определение и свойства биссектрисы угла треугольника

В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.

Содержание
  1. Определение биссектрисы угла треугольника
  2. Свойства биссектрисы треугольника
  3. Свойство 1 (теорема о биссектрисе)
  4. Свойство 2
  5. Свойство 3
  6. Свойство 4
  7. Свойство 5
  8. Пример задачи
  9. Элементы треугольника. Биссектриса
  10. Свойства биссектрисы
  11. Некоторые формулы, связанные с биссектрисой треугольника
  12. Треугольник. Формулы определения и свойства треугольников.
  13. Определение треугольника
  14. Классификация треугольников
  15. 1.Разносторонний – треугольник, у которого все стороны имеют разную длину.
  16. 2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β
  17. 3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.
  18. 4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°
  19. 5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.
  20. 6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).
  21. Свойства треугольника
  22. 1.Свойства углов и сторон треугольника.
  23. 2.Теорема синусов.
  24. 3. Теорема косинусов.
  25. 4. Теорема о проекциях
  26. Медианы треугольника
  27. Свойства медиан треугольника:
  28. Формулы медиан треугольника
  29. 🎦 Видео

Видео:Пересечение биссектрис треугольника в одной точке, Геометрия 7 классСкачать

Пересечение биссектрис треугольника в одной точке,  Геометрия 7 класс

Определение биссектрисы угла треугольника

Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.

Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.

Треугольник образованный основаниями биссектрис

Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.

Внешней называется биссектриса угла, смежного с внутренним углом треугольника.

Треугольник образованный основаниями биссектрис

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Свойства биссектрисы треугольника

Свойство 1 (теорема о биссектрисе)

Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):

Треугольник образованный основаниями биссектрис

Свойство 2

Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.

Треугольник образованный основаниями биссектрис

Свойство 3

Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).

Треугольник образованный основаниями биссектрис

Треугольник образованный основаниями биссектрис

Треугольник образованный основаниями биссектрис

Треугольник образованный основаниями биссектрис

Свойство 4

Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):

BD 2 = AB ⋅ BC – AD ⋅ DC

Треугольник образованный основаниями биссектрис

Свойство 5

Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.

Треугольник образованный основаниями биссектрис

  • CD – внутренняя биссектриса ∠ACB;
  • CE – биссектриса угла, смежного с ∠ACB;
  • DCE равен 90°, т.е. биссектрисы CD и CE перпендикулярны.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Пример задачи

Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.

Решение
Нарисуем чертеж согласно условиям задачи.

Треугольник образованный основаниями биссектрис

Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов).
BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
Следовательно, BC = 10 см.

Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):

Треугольник образованный основаниями биссектрис

Избавляемся от дробей и решаем получившееся уравнение:
8a = 60 – 6a
14a = 60
a ≈ 4,29

Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.

Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4:
AD 2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.

Видео:Формула для биссектрисы треугольникаСкачать

Формула для биссектрисы треугольника

Элементы треугольника. Биссектриса

Биссектриса треугольника – отрезок биссектрисы угла треугольника, заключенный между вершиной треугольника и противолежащей ей стороной.

Треугольник образованный основаниями биссектрис

Видео:Свойство биссектрисы треугольника с доказательствомСкачать

Свойство биссектрисы треугольника с доказательством

Свойства биссектрисы

1. Биссектриса треугольника делит угол пополам.

2. Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон (Треугольник образованный основаниями биссектрис)

3. Точки биссектрисы угла треугольника равноудалены от сторон этого угла.

4. Биссектрисы внутренних углов треугольника пересекаются в одной точке — центре вписанной в этот треугольник окружности.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Некоторые формулы, связанные с биссектрисой треугольника

Треугольник образованный основаниями биссектрис(доказательство формулы – здесь)
Треугольник образованный основаниями биссектрис, где
Треугольник образованный основаниями биссектрис— длина биссектрисы, проведённой к стороне Треугольник образованный основаниями биссектрис,
Треугольник образованный основаниями биссектрис— стороны треугольника против вершин Треугольник образованный основаниями биссектриссоответственно,
Треугольник образованный основаниями биссектрис— длины отрезков, на которые биссектриса Треугольник образованный основаниями биссектрисделит сторону Треугольник образованный основаниями биссектрис,

Приглашаю посмотреть видеоурок, в котором демонстрируется применение всех указанных выше свойств биссектрисы.

Задачи, рассматриваемые в видеоролике:
1.В треугольнике АВС со сторонами АВ=2 см, ВС=3 см, АС=3 см проведена биссектриса ВМ. Найти длины отрезков АМ и МС
2. Биссектриса внутреннего угла при вершине А и биссектриса внешнего угла при вершине С треугольника АВС пересекаются в точке М. Найдите угол BMC, если угол В равен 40, угол С – 80 градусов
3. Найти радиус окружности, вписанной в треугольник, считая стороны квадратных клеток равными 1

Треугольник образованный основаниями биссектрис

Возможно, вам будет интересен и этот небольшой видеоурок, где применяется одно из свойств биссектрисы

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:44 Треугольник с вершинами в основаниях биссектрис треугольника с углом величины 120 градусовСкачать

44 Треугольник с вершинами в основаниях биссектрис треугольника с углом величины 120  градусов

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Видео:3 свойства биссектрисы #shortsСкачать

3 свойства биссектрисы #shorts

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Треугольник образованный основаниями биссектрис

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Видео:№240. В равнобедренном треугольнике ABC с основанием АС биссектрисы углов А и С пересекаютсяСкачать

№240. В равнобедренном треугольнике ABC с основанием АС биссектрисы углов А и С пересекаются

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

Треугольник образованный основаниями биссектрис

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

Треугольник образованный основаниями биссектрис

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

Треугольник образованный основаниями биссектрис

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

Треугольник образованный основаниями биссектрис

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

Треугольник образованный основаниями биссектрис

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Треугольник образованный основаниями биссектрис

Видео:№235. В равнобедренном треугольнике ABC с основанием АС проведена биссектриса AD. Найдите углыСкачать

№235. В равнобедренном треугольнике ABC с основанием АС проведена биссектриса AD. Найдите углы

Свойства треугольника

1.Свойства углов и сторон треугольника.

Треугольник образованный основаниями биссектрис

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c
sin αsin βsin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Видео:ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Треугольник образованный основаниями биссектрис

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO=BO=CO=2
ODOEOF1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Треугольник образованный основаниями биссектрис

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

🎦 Видео

Как найти биссектрису в треугольнике? 2 формулы биссектрисыСкачать

Как найти биссектрису в треугольнике?  2 формулы биссектрисы

28. Геометрия на ЕГЭ по математике. Высоты, медианы, биссектрисы треугольника.Скачать

28. Геометрия на ЕГЭ по математике. Высоты, медианы, биссектрисы треугольника.

ЕГЭ задание 16 Теорема Менелая. Свойство биссектрисы треугольникаСкачать

ЕГЭ задание 16 Теорема Менелая. Свойство биссектрисы треугольника

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Секретные формулы биссектрисы треугольника!😉❤️‍🔥#математика #егэСкачать

Секретные формулы биссектрисы треугольника!😉❤️‍🔥#математика #егэ

№265. В равнобедренном треугольнике ABC с основанием АС проведены биссектриса AF и высота АН.Скачать

№265. В равнобедренном треугольнике ABC с основанием АС проведены биссектриса AF и высота АН.

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Биссектриса треугольника. Построение. 1 частьСкачать

Биссектриса треугольника. Построение. 1 часть

Геометрия № 83 №211 Задача найти угол между биссектрисами смежных и односторонних угловСкачать

Геометрия № 83 №211 Задача найти угол между биссектрисами смежных и односторонних углов
Поделиться или сохранить к себе: