Вписанные четырехугольники и их свойства |
Теорема Птолемея |
Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | ||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||
Окружность, описанная около ромба | ||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||
Окружность, описанная около трапеции | ||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||
Окружность, описанная около дельтоида | ||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||
Произвольный вписанный четырёхугольник | ||
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
(1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Видео:Геометрия Теорема Птолемея Произведение диагоналей вписанного в окружность четырехугольника равноСкачать
Теорема Птолемея.
Теорема. Произведение диагоналей четырехугольника, вписанного в окружность, равно сумме произведений противоположных сторон этого четырехугольника.
Доказательство.
Отложим от луча СD угол DCK равный углу ACB. CK∩DB=E.
Рассмотрим ΔDCE и ΔACB:
- ∠δ=∠γ (вписанные углы, опирающиеся на дугу BC);
- ∠ε=∠ζ (по построению).
Следовательно, ΔDCE подобен ΔACB по 2 углам.
Выразим DE через AC, AB и DC: DE=(DC·AB)/AC (1).
Рассмотрим ΔDCA и ΔBCE :
- ∠α=∠β (вписанные углы, опирающиеся на дугу DC);
- ∠DCA=∠ECB (по построению).
Следовательно, ΔDCA подобен ΔECB по 2 углам.
Выразим EB через AC, CB и DA: EB=(DA·CB)/AC (2).
Видео:Теорема Птолемея на ЕГЭ по математикеСкачать
Теорема Птолемея
Произведение диагоналей вписанного четырёхугольника равно сумме произведений двух пар его противолежащих сторон.
Дано:
4-угольник ABCD вписан в окр. (O; R)
Из треугольников ABC и ADC по теореме косинусов
Введём обозначения AB=a, BC=b, CD=c, AD=d, AC=d1, BC=d2.
Так как четырёхугольник ABCD — вписанный, то ∠ABC+∠ADC=180°.
Что и требовалось доказать.
В ходе доказательства получили полезные соотношения:
1) Диагонали вписанного четырёхугольника связаны с его сторонами равенствами:
2)Отношение диагоналей вписанного четырёхугольника.
то есть диагонали вписанного четырехугольника относятся как суммы произведений сторон, сходящихся в концах диагоналей.
Построим угол CBK, равный углу DBA.
У треугольников CBK и DBA
∠CBK=∠DBA (по построению)
Значит треугольники CBK и DBA подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
откуда по основному свойству пропорции
Рассмотрим треугольники ABK и DBC.
∠BAK=∠BDC (как вписанные углы, опирающиеся на одну дугу BC).
а так как ∠ABD=∠CBK, то и ∠ABK=∠DBC.
Следовательно, треугольники ABK и DBC подобны (по двум углам), и
📹 Видео
ЕГЭ 2022 Планиметрия Теорема Птолемея. Вписанный четырёхугольникСкачать
Теорема ПТОЛЕМЕЯСкачать
Вписанные четырехугольники. 9 класс.Скачать
Теорема ПтолемеяСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Идея, решающая 70 геометрических задач [4K]Скачать
Вписанный в окружность четырёхугольник.Скачать
8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать
Теорема Вариньона. Теорема Птолемея. Теорема Помпею.Скачать
Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать
Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
#58. Олимпиадная задача о четырехугольникеСкачать
ОКРУЖНОСТЬ (теорема Птолемея) ЧАСТЬ 19Скачать
Свойство и признак вписанного четырехугольникаСкачать