Тангенс 60 на тригонометрической окружности

Таблица ТАНГЕНСОВ для углов от 0° до 360° градусов

ТАНГЕНС (Tg α) острого угла в прямоугольном треугольнике равняется отношение противолежащего катета к прилежащему катету.

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
tg α (Тангенс)01/31300

Полная таблица тангенсов для углов от 0° до 360°

Угол в градусахtg (Тангенс)
0
0.0175
0.0349
0.0524
0.0699
0.0875
0.1051
0.1228
0.1405
0.1584
10°0.1763
11°0.1944
12°0.2126
13°0.2309
14°0.2493
15°0.2679
16°0.2867
17°0.3057
18°0.3249
19°0.3443
20°0.364
21°0.3839
22°0.404
23°0.4245
24°0.4452
25°0.4663
26°0.4877
27°0.5095
28°0.5317
29°0.5543
30°0.5774
31°0.6009
32°0.6249
33°0.6494
34°0.6745
35°0.7002
36°0.7265
37°0.7536
38°0.7813
39°0.8098
40°0.8391
41°0.8693
42°0.9004
43°0.9325
44°0.9657
45°1
46°1.0355
47°1.0724
48°1.1106
49°1.1504
50°1.1918
51°1.2349
52°1.2799
53°1.327
54°1.3764
55°1.4281
56°1.4826
57°1.5399
58°1.6003
59°1.6643
60°1.7321
61°1.804
62°1.8807
63°1.9626
64°2.0503
65°2.1445
66°2.246
67°2.3559
68°2.4751
69°2.6051
70°2.7475
71°2.9042
72°3.0777
73°3.2709
74°3.4874
75°3.7321
76°4.0108
77°4.3315
78°4.7046
79°5.1446
80°5.6713
81°6.3138
82°7.1154
83°8.1443
84°9.5144
85°11.4301
86°14.3007
87°19.0811
88°28.6363
89°57.29
90°

Таблица тангенсов для углов от 91° до 180°

Уголtg (Тангенс)
91°-57.29
92°-28.6363
93°-19.0811
94°-14.3007
95°-11.4301
96°-9.5144
97°-8.1443
98°-7.1154
99°-6.3138
100°-5.6713
101°-5.1446
102°-4.7046
103°-4.3315
104°-4.0108
105°-3.7321
106°-3.4874
107°-3.2709
108°-3.0777
109°-2.9042
110°-2.7475
111°-2.6051
112°-2.4751
113°-2.3559
114°-2.246
115°-2.1445
116°-2.0503
117°-1.9626
118°-1.8807
119°-1.804
120°-1.7321
121°-1.6643
122°-1.6003
123°-1.5399
124°-1.4826
125°-1.4281
126°-1.3764
127°-1.327
128°-1.2799
129°-1.2349
130°-1.1918
131°-1.1504
132°-1.1106
133°-1.0724
134°-1.0355
135°-1
136°-0.9657
137°-0.9325
138°-0.9004
139°-0.8693
140°-0.8391
141°-0.8098
142°-0.7813
143°-0.7536
144°-0.7265
145°-0.7002
146°-0.6745
147°-0.6494
148°-0.6249
149°-0.6009
150°-0.5774
151°-0.5543
152°-0.5317
153°-0.5095
154°-0.4877
155°-0.4663
156°-0.4452
157°-0.4245
158°-0.404
159°-0.3839
160°-0.364
161°-0.3443
162°-0.3249
163°-0.3057
164°-0.2867
165°-0.2679
166°-0.2493
167°-0.2309
168°-0.2126
169°-0.1944
170°-0.1763
171°-0.1584
172°-0.1405
173°-0.1228
174°-0.1051
175°-0.0875
176°-0.0699
177°-0.0524
178°-0.0349
179°-0.0175
180°0

Таблица тангенсов для углов от 181° до 270°

Уголtg (Тангенс)
181°0.0175
182°0.0349
183°0.0524
184°0.0699
185°0.0875
186°0.1051
187°0.1228
188°0.1405
189°0.1584
190°0.1763
191°0.1944
192°0.2126
193°0.2309
194°0.2493
195°0.2679
196°0.2867
197°0.3057
198°0.3249
199°0.3443
200°0.364
201°0.3839
202°0.404
203°0.4245
204°0.4452
205°0.4663
206°0.4877
207°0.5095
208°0.5317
209°0.5543
210°0.5774
211°0.6009
212°0.6249
213°0.6494
214°0.6745
215°0.7002
216°0.7265
217°0.7536
218°0.7813
219°0.8098
220°0.8391
221°0.8693
222°0.9004
223°0.9325
224°0.9657
225°1
226°1.0355
227°1.0724
228°1.1106
229°1.1504
230°1.1918
231°1.2349
232°1.2799
233°1.327
234°1.3764
235°1.4281
236°1.4826
237°1.5399
238°1.6003
239°1.6643
240°1.7321
241°1.804
242°1.8807
243°1.9626
244°2.0503
245°2.1445
246°2.246
247°2.3559
248°2.4751
249°2.6051
250°2.7475
251°2.9042
252°3.0777
253°3.2709
254°3.4874
255°3.7321
256°4.0108
257°4.3315
258°4.7046
259°5.1446
260°5.6713
261°6.3138
262°7.1154
263°8.1443
264°9.5144
265°11.4301
266°14.3007
267°19.0811
268°28.6363
269°57.29
270°

Таблица тангенсов для углов от 271° до 360°

Уголtg (Тангенс)
271°-57.29
272°-28.6363
273°-19.0811
274°-14.3007
275°-11.4301
276°-9.5144
277°-8.1443
278°-7.1154
279°-6.3138
280°-5.6713
281°-5.1446
282°-4.7046
283°-4.3315
284°-4.0108
285°-3.7321
286°-3.4874
287°-3.2709
288°-3.0777
289°-2.9042
290°-2.7475
291°-2.6051
292°-2.4751
293°-2.3559
294°-2.246
295°-2.1445
296°-2.0503
297°-1.9626
298°-1.8807
299°-1.804
300°-1.7321
301°-1.6643
302°-1.6003
303°-1.5399
304°-1.4826
305°-1.4281
306°-1.3764
307°-1.327
308°-1.2799
309°-1.2349
310°-1.1918
311°-1.1504
312°-1.1106
313°-1.0724
314°-1.0355
315°-1
316°-0.9657
317°-0.9325
318°-0.9004
319°-0.8693
320°-0.8391
321°-0.8098
322°-0.7813
323°-0.7536
324°-0.7265
325°-0.7002
326°-0.6745
327°-0.6494
328°-0.6249
329°-0.6009
330°-0.5774
331°-0.5543
332°-0.5317
333°-0.5095
334°-0.4877
335°-0.4663
336°-0.4452
337°-0.4245
338°-0.404
339°-0.3839
340°-0.364
341°-0.3443
342°-0.3249
343°-0.3057
344°-0.2867
345°-0.2679
346°-0.2493
347°-0.2309
348°-0.2126
349°-0.1944
350°-0.1763
351°-0.1584
352°-0.1405
353°-0.1228
354°-0.1051
355°-0.0875
356°-0.0699
357°-0.0524
358°-0.0349
359°-0.0175
360°0

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен тангенс 30? …

— Ищем в таблице соответствующее значение. Правильный ответ: 0.5774

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Тангенс 60 на тригонометрической окружностиПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что Тангенс 60 на тригонометрической окружностии Тангенс 60 на тригонометрической окружности

Тангенс 60 на тригонометрической окружности

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить Тангенс 60 на тригонометрической окружности

Находим на круге Тангенс 60 на тригонометрической окружности. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что Тангенс 60 на тригонометрической окружности

Ответ: Тангенс 60 на тригонометрической окружности

Пример 2.

Вычислить Тангенс 60 на тригонометрической окружности

Находим на круге Тангенс 60 на тригонометрической окружности. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

Тангенс 60 на тригонометрической окружностине существует.

Ответ: не существует

Пример 3.

Вычислить Тангенс 60 на тригонометрической окружности

Тангенс 60 на тригонометрической окружности

Находим на круге точку Тангенс 60 на тригонометрической окружности(это та же точка, что и Тангенс 60 на тригонометрической окружности) и от нее по часовой стрелке (знак минус!) откладываем Тангенс 60 на тригонометрической окружности(Тангенс 60 на тригонометрической окружности). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как Тангенс 60 на тригонометрической окружности. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение Тангенс 60 на тригонометрической окружности.

Так значит, Тангенс 60 на тригонометрической окружности

Ответ: Тангенс 60 на тригонометрической окружности

Пример 4.

Вычислить Тангенс 60 на тригонометрической окружности

Тангенс 60 на тригонометрической окружности

Поэтому от точки Тангенс 60 на тригонометрической окружности(именно там будет Тангенс 60 на тригонометрической окружности) откладываем против часовой стрелки Тангенс 60 на тригонометрической окружности.

Выходим на ось котангенсов, получаем, что Тангенс 60 на тригонометрической окружности

Ответ: Тангенс 60 на тригонометрической окружности

Пример 5.

Вычислить Тангенс 60 на тригонометрической окружности

Находим на круге Тангенс 60 на тригонометрической окружности. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что Тангенс 60 на тригонометрической окружности

Ответ: Тангенс 60 на тригонометрической окружности

Тангенс 60 на тригонометрической окружностиТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Синус 30, косинус 30, тангенс 30 градусов и синус 60, косинус 60, тангенс 60 градусов

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Значения тригонометрических функций синуса, косинуса, тангенса при α=30°

Рассмотрим равносторонний треугольник АВС. Пусть, каждая из его сторон будет равна a . Согласно свойствам равностороннего треугольника, все его углы равны, в том числе угол В=60°.

Значения синуса, косинуса и тангенса мы можем вычислить, если найдем соотношение соответствующих сторон для угла 30 градусов в прямоугольном треугольнике. Так как значение этих тригонометрических функций зависит исключительно от градусной меры угла, то вычисленные нами соотношения и будут значениями синуса 30, косинуса 30 и тангенса 30 градусов.

Сначала совершим дополнительные построения. Из вершины А на сторону BC проведем медиану AO.

Медиана АО в равностороннем треугольнике одновременно является биссектрисой и высотой.

Тогда треугольник АОВ – прямоугольный с углом ВАО=30°. (Угол В равен 60 градусам, ВOA прямой и равен 90 градусам, следовательно, ВАО = 180 — 90 — 60 = 30 градусов)

Видео:Тригонометрическая окружность tg x и ctg xСкачать

Тригонометрическая окружность tg x и ctg x

Значення тригонометричних функцій синуса, косинуса, тангенса при α=30°

Розглянемо рiвнобiчний трикутник АВС. Хай, кожна з його сторін буде рівна а . Згідно з властивостями рівностороннього трикутника, всі його кути рівні, у тому числі кут ∠В=60°.

Значення синуса, косинуса і тангенса ми можемо обчислити, якщо знайдемо співвідношення відповідних сторін для кута 30 градусів в прямокутному трикутнику. Оскільки значення цих тригонометричних функцій залежить виключно від градусної міри кута, то обчислені нами співвідношення і будуть значеннями синуса 30, косинуса 30 і тангенса 30 градусів.

Спочатку зробимо додаткові побудови. З вершини А на сторону BC проведемо медіану АO.

Медіана АО у рівносторонньому трикутнику одночасно є бісектрисою і висотою.

Тоді тикутник АОВ — прямокутний з кутом ∠ВАО=30°. (Кут В дорівнює 60 градусам ВOA прямій і дорівнює 90 градусам, отже ВАО = 180 — 90 — 60 = 30 градусів)

Для полученного прямоугольного треугольника вычислим значения тригонометрических функций его углов. Сделаем это сначала для угла 30 градусов.

Величина гипотенузы нам известна и равна a. Катет OB равен a/2 , так как AO — медиана треугольника ABC. Найдем катет AO.

По теореме Пифагора:

подставим в полученное выражение значение гипотенузы (мы приняли, что оно равно а)

Теперь мы вычислили все стороны прямоугольного треугольника ABO. Учитывая, что AB = a, OB = a/2, AO = a√3/2, из соотношений сторон прямоугольного треугольника рассчитаем полученные значения. Согласно определению синуса, косинуса и тангенса:

sin 30 = OB / AB (по определению синуса — отношение противолежащего катета к гипотенузе)

cos 30 = AO / AB (по определению косинуса — отношение прилежащего катета к гипотенузе)

tg 30 = OB / AO (по определению тангенса — отношение противолежащего катета к прилежащему)

Так как треугольник ABC — равносторонний, то BO равно AB/2, а значение AO вычислено выше. В результате получаем табличные значения sin 30, cos 30 и tg 30 градусов

Для отриманого прямокутного трикутника обчислимо значення тригонометричних функцій його кутів. Зробимо це спочатку для кута 30 градусів.

Величина гіпотенузи нам відома і рівна а. Катет OB рівний a/2, оскільки АO — медіана трикутника ABC. Знайдемо катет АТ.

По теоремі Піфагора:

пiдставимо в одержане рiвняння значення гiпотенузи (намi прийнято, що воно равно а)

Тепер ми обчислили всі сторони прямокутного трикутника ABO. Враховуючи, що AB = a, OB = a/2, AO = a√3/2, iз спiввiдношень сторiн прямокутного трикутника розрахуємо одержанi значення. Згiдно визначенню сiнуса, косiнуса та тангенса:

sin 30 = OB / AB (за визначенням синуса — відношення катета, що протилежить, до гіпотенузи)

cos 30 = AO / AB (за визначенням косинуса — відношення прилеглого катета до гіпотенузи)

tg 30 = OB / AO (за визначенням тангенса — відношення катета, що протилежить, до прилеглого)

Враховуючи, що трикутник ABC — рiвнобiчний, то BO равно AB/2, а значення AO розраховано вище. В результатi одержуємо табличнi значення sin 30, cos 30 и tg 30 градусiв

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Табличные значения sin 30, cos 30 и tg 30 градусов:

То есть:
Тангенс 30 градусов равен корню из трех на три
Синус 30 градусов равен одной второй или 0,5
Косинус 30 градусов равен корню из трех на два

Так как sin( 90°- 30°) = sin60° , а sin60°=cos30°, то:

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Табличные значения sin 60, cos 60 и tg 60 градусов:

Как именно были вычислены эти функции, описано выше. Здесь же приведены сами значения:

То есть:
Тангенс 60 градусов равен корню из трех
Синус 60 градусов равен корню из трех на два
Косинус 60 градусов равен одной второй или 0,5

Как видно из расчетов, приведенных выше, при вычислении значения конкретной тригонометрической функции важны не конкретные длины сторон, а только их соотношение, которое всегда будет одинаковым для одних и тех же углов, вне зависимости от размеров треугольника.

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

Синус, косинус и тангенс угла пи на 3 (π/3)

  • Тангенс π/3 (пи на три) радиан равен корню из трех
  • Синус π/3 (пи на три) радиан равен корню из трех на два
  • Косинус π/3 (пи на три) радиан равен одной второй (1/2) или 0,5
Тобто:
Тангенс 60 градусів дорівнює кореню з трьох
Синус 60 градусів дорівнює кореню з трьох на два
Косинус 60 градусів рівний однією другою або 0,5

Як видно з розрахунків, приведених вище, при обчисленні значення конкретної тригонометричної функції важливі не конкретні довжини сторін, а лише їх співвідношення, яке завжди буде однаковим для одних і тих же кутів, незалежно від розмірів трикутника.

Видео:🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

Синус, косинус і тангенс кута пі на 3 (π/3)

У завданнях окрім градусної міри кута часто зустрічаються і позначення кута в радіанах. Міра радіану кута виражається через число пі, яке описує співвідношення довжини кола до її діаметру. Для простоти запам’ятовування правила переведення радіан в градуси i назад, пропоную завжди пам’ятати наступне: діаметр кола охоплює дугу величиною 180 градусів, що складає пі радіан. Оскільки всі величини кута в радіанах вказуються через число пі, то для переведення в градусну міру досить замінити число пі на 180 градусів.

Тому, візьмемо до уваги, що кут пі на 3 дорівнює 60 градусам. (180 / 3 = 60)

🎬 Видео

Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений ДолжкевичСкачать

Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений Должкевич

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

Радианная мера угла. 9 класс.Скачать

Радианная мера угла. 9 класс.

Таблица значений тригонометрических функций - как её запомнить!!!Скачать

Таблица значений тригонометрических функций - как её запомнить!!!

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.Скачать

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.

Как запомнить тригонометрический круг специально ничего не выучивая?Скачать

Как запомнить тригонометрический круг специально ничего не выучивая?

Синус, косинус произвольного угла. 9 класс.Скачать

Синус, косинус произвольного угла. 9 класс.

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

12 часов Тригонометрии с 0.Скачать

12 часов Тригонометрии с 0.

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА 30, 45 И 60 ГРАДУСОВСкачать

ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА 30, 45 И 60 ГРАДУСОВ
Поделиться или сохранить к себе: