Свойство длин сторон треугольника

Треугольник. Формулы и свойства треугольников.
Содержание
  1. Типы треугольников
  2. По величине углов
  3. По числу равных сторон
  4. Вершины углы и стороны треугольника
  5. Свойства углов и сторон треугольника
  6. Теорема синусов
  7. Теорема косинусов
  8. Теорема о проекциях
  9. Формулы для вычисления длин сторон треугольника
  10. Медианы треугольника
  11. Свойства медиан треугольника:
  12. Формулы медиан треугольника
  13. Биссектрисы треугольника
  14. Свойства биссектрис треугольника:
  15. Формулы биссектрис треугольника
  16. Высоты треугольника
  17. Свойства высот треугольника
  18. Формулы высот треугольника
  19. Окружность вписанная в треугольник
  20. Свойства окружности вписанной в треугольник
  21. Формулы радиуса окружности вписанной в треугольник
  22. Окружность описанная вокруг треугольника
  23. Свойства окружности описанной вокруг треугольника
  24. Формулы радиуса окружности описанной вокруг треугольника
  25. Связь между вписанной и описанной окружностями треугольника
  26. Средняя линия треугольника
  27. Свойства средней линии треугольника
  28. Периметр треугольника
  29. Формулы площади треугольника
  30. Формула Герона
  31. Равенство треугольников
  32. Признаки равенства треугольников
  33. Первый признак равенства треугольников — по двум сторонам и углу между ними
  34. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  35. Третий признак равенства треугольников — по трем сторонам
  36. Подобие треугольников
  37. Признаки подобия треугольников
  38. Первый признак подобия треугольников
  39. Второй признак подобия треугольников
  40. Третий признак подобия треугольников
  41. Треугольник
  42. Из двух последних свойств следует, что каждый угол в равностороннем
  43. треугольнике равен 60 º.
  44. 4. Продолжая одну из сторон треугольника ( AC , рис.25), получаем внешний
  45. угол BCD . Внешний угол треугольника равен сумме внутренних углов,
  46. не смежных с ним : BCD = A + B .
  47. 5. Любая сторона треугольника меньше суммы двух других сторон и больше
  48. их разности ( a b – c; b b > a – c; c c > a – b ).
  49. 51. Планиметрия Читать 0 мин.
  50. 51.180. Треугольники

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

Типы треугольников

По величине углов

Свойство длин сторон треугольника

Свойство длин сторон треугольника

Свойство длин сторон треугольника

По числу равных сторон

Свойство длин сторон треугольника

Свойство длин сторон треугольника

Свойство длин сторон треугольника

Видео:9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Свойство длин сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Медианы треугольника

Свойство длин сторон треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Биссектрисы треугольника

Свойство длин сторон треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Виды треугольниковСкачать

Виды треугольников

Высоты треугольника

Свойство длин сторон треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Окружность вписанная в треугольник

Свойство длин сторон треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Окружность описанная вокруг треугольника

Свойство длин сторон треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Связь между вписанной и описанной окружностями треугольника

Видео:Свойство биссектрисы треугольника с доказательствомСкачать

Свойство биссектрисы треугольника с доказательством

Средняя линия треугольника

Свойства средней линии треугольника

Свойство длин сторон треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Периметр треугольника

Свойство длин сторон треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Формулы площади треугольника

Свойство длин сторон треугольника

Формула Герона

S =a · b · с
4R

Видео:8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать

Как найти длину биссектрисы, медианы и высоты?  | Ботай со мной #031 | Борис Трушин

Подобие треугольников

Свойство длин сторон треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Геометрия Равносторонний треугольникСкачать

Геометрия  Равносторонний треугольник

Треугольник

Треугольник. Остроугольный, тупоугольный и прямоугольный треугольник.

Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.

Основные свойства треугольников. Сумма углов треугольника.

Внешний угол треугольника. Признаки равенства треугольников.

Признаки равенства прямоугольных треугольников.

Замечательные линии и точки в треугольнике: высоты, медианы,

биссектрисы, срединны e перпендикуляры, ортоцентр,

центр тяжести, центр описанного круга, центр вписанного круга.

Теорема Пифагора. Соотношение сторон в произвольном треугольнике.

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Свойство длин сторон треугольника
Если все три угла острые ( рис.20 ), то это остроугольный треугольник . Если один из углов прямой ( Свойство длин сторон треугольникаC, рис.21 ), то это прямоугольный треугольник; стороны a , b , образующие прямой угол, называются катетами; сторона c , противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( Свойство длин сторон треугольникаB, рис.22 ), то это тупоугольный треугольник.
Свойство длин сторон треугольника
Треугольник ABC ( рис.23 ) — равнобедренный , если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) – равносторонний , если все его стороны равны ( a = b = c ). В общем случае ( abc ) имеем неравносторонний треугольник.

Основные свойства треугольников. В любом треугольнике:

1. Против большей стороны лежит больший угол, и наоборот.

2. Против равных сторон лежат равные углы, и наоборот.

В частности, все углы в равностороннем треугольнике равны.

3. Сумма углов треугольника равна 180 º .

Видео:Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Из двух последних свойств следует, что каждый угол в равностороннем

Видео:Средняя линия. Теорема о средней линии треугольникаСкачать

Средняя линия. Теорема о средней линии треугольника

треугольнике равен 60 º.

Видео:Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

4. Продолжая одну из сторон треугольника ( AC , рис.25), получаем внешний

Видео:Построение треугольника. Свойство сторон треугольникаСкачать

Построение треугольника. Свойство сторон треугольника

угол Свойство длин сторон треугольникаBCD . Внешний угол треугольника равен сумме внутренних углов,

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

не смежных с ним : Свойство длин сторон треугольникаBCD = Свойство длин сторон треугольникаA + Свойство длин сторон треугольникаB .

Видео:Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

5. Любая сторона треугольника меньше суммы двух других сторон и больше

их разности ( a bc; b b > ac; c c > ab ).

Признаки равенства треугольников.

Треугольники равны, если у них соответственно равны:

a ) две стороны и угол между ними;

b ) два угла и прилегающая к ним сторона;

Признаки равенства прямоугольных треугольников.

Д ва прямоугольных треугольника равны, если выполняется одно из следующих условий:

1) равны их катеты;

2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;

3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;

4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;

5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

Замечательные линии и точки в треугольнике.

Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке , называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O , рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O , рис.27 ) снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Свойство длин сторон треугольника

Медиана – это отрезок , соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD , BE , CF , рис.28 ) пересекаются в одной точке O , всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника ( AD , BE , CF , рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).

Свойство длин сторон треугольника

Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам ; например, на рис.29 AE : CE = AB : BC .

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС ( KO , MO , NO , рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K , M , N – середины сторон треугольника ABC ).

Свойство длин сторон треугольника

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a , b и гипотенузой c .

Свойство длин сторон треугольника

Построим квадрат AKMB , используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF , сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB , то есть

и окончательно имеем:

Соотношение сторон в произвольном треугольнике.

В общем случае ( для произвольного треугольника ) имеем:

где C – угол между сторонами a и b .

Copyright © 2004 — 2012 Др. Юрий Беренгард. All rights reserved.

51. Планиметрия Свойство длин сторон треугольникаЧитать 0 мин.

51.180. Треугольники

Треугольник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой.

СВОЙСТВА ТРЕУГОЛЬНИКА:

Свойство длин сторон треугольника

1. Сумма углов в треугольнике равна α + β + γ = 180°.

2. Против большей стороны находится больший угол; против меньшего угла находится меньшая сторона. Отсюда следует, что если:

Если это правило не выполняется — треугольник не существует.

4. Формулы площади треугольника:

1 (через высоту)

2 (через две стороны и синус угла между ними)

3 (формула Герона)

Свойство длин сторон треугольника

Свойство длин сторон треугольника

Свойство длин сторон треугольника

$S = displaystylefrac12 a h_a$

$S = displaystylefracab,sin alpha$

Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне.

Площадь треугольника равна половине произведения его сторон на синус угла между ними.

Площадь треугольника равна квадратному корню из произведения его полупериметра на разности полупериметра и каждой из его сторон.

5. Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Свойство длин сторон треугольника

6. Теорема синусов: Отношения сторон треугольника к синусам противоположных им углов равны. Это отношение равно 2R, где R — радиус описанной окружности.

Свойство длин сторон треугольника

7. Внешний угол треугольника — δ, является смежным с одним из внутренних углов (сумма = 180°). Из этого следует, что внешний угол равен сумме двух внутренних, но не смежных с ним, углов треугольника (α + β = δ).

Свойство длин сторон треугольника

ВИДЫ ТРЕУГОЛЬНИКОВ:

  • остроугольными (если все его углы острые),
  • тупоугольными (если один из его углов тупой),
  • прямоугольными (если один из его углов прямой).
  • равнобедренным, если две его стороны равны;
  • равносторонним, если все три стороны равны;
  • разносторонним, если все его стороны разные.

ЭЛЕМЕНТЫ ТРЕУГОЛЬНИКА:

БИССЕКТРИСА

Биссектриса ― луч, который соединяет вершину треугольника с противоположной стороной, при этом разделяя угол на две равные части.

Свойство длин сторон треугольника

Свойства биссектрисы треугольника:

1. Все три биссектрисы треугольника пересекаются в одной точке. Эта точка — центр вписанной в треугольник окружности.

Свойство длин сторон треугольника

2. Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные двум другим сторонам.

Свойство длин сторон треугольника

3. Формулы для биссектрисы треугольника. Если а и b — стороны треугольника, γ — угол между ними, l — биссектриса треугольника, проведённая из вершины этого угла, а а’ и b’ — отрезки, на которые биссектриса делит третью сторону треугольника, то

МЕДИАНА

Медиана ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Свойство длин сторон треугольника

Свойства медианы треугольника:

1. Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и точкой пересечения делятся в отношении 2 к 1, считая от вершины.

Свойство длин сторон треугольника

  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Формула для медианы треугольника. Если стороны треугольника a и b, mc — медиана треугольника, проведённая к стороне c, то

ВЫСОТА

Высота — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону).

Свойство длин сторон треугольника

В зависимости от типа треугольника высота может содержаться:

  • внутри треугольника (для остроугольного треугольника),
  • совпадать с его стороной (являться катетом прямоугольного треугольника),
  • проходить вне треугольника (для тупоугольного треугольника).

Свойства высоты треугольника:

1. Все три высоты треугольника пересекаются в одной точке, которая называется ортоцентром.

Свойство длин сторон треугольника

2. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

3. Если в треугольнике две высоты равны, то треугольник — равнобедренный.

4. Если CC₁ и АА₁ — высоты треугольника АВС, то треугольник ВА₁С₁ подобен треугольнику АВС, причём коэффициент подобия равен cos B.

Свойство длин сторон треугольника

Сложные теоремы:

5. Если Н — точка пересечения высот треугольника AВС, а О — центр его описанной окружности, то отрезок АН вдвое больше расстояния от точки О до середины стороны ВС. То есть AH = 2OM.

Свойство длин сторон треугольника

6. Если Н — точка пересечения высот треугольника AВС, М — точка пересечения медиан треугольника AВС, а О — центр его описанной окружности, то точки О, H и М лежат на одной прямой (прямая Эйлера), причём точка М лежит на отрезке ОН и ОМ : МН = 1 : 2.

Свойство длин сторон треугольника

СРЕДИННЫЙ ПЕРПЕНДИКУЛЯР

Срединный перпендикуляр треугольника — прямая, перпендикулярная стороне треугольника и проходящая через его середину.

Все три срединных перпендикуляра треугольника пересекаются в одной точке, которая является центром описанной около треугольника окружности.

СРЕДНЯЯ ЛИНИЯ

Средняя линия треугольника — отрезок, соединяющий середины двух сторон этого треугольника

Свойство длин сторон треугольника

Свойства средней линии треугольника:

  • Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине:
  • В любом треугольнике три средних линии, при пересечении которых образуются 4 равных треугольника, подобных исходному с коэффициентом 1/2.

Свойство длин сторон треугольника

$bigtriangleup AMN = bigtriangleup NKB = bigtriangleup NMK = bigtriangleup MCK$

ПОДОБИЕ И РАВЕНСТВО ТРЕУГОЛЬНИКОВ

Подобные треугольники

Равные треугольники

Свойство длин сторон треугольника

Треугольники подобны, если их углы равны. В подобных фигурах сохраняется отношение между соответствующими сторонами и другими линейными величинами (высоты, медианы, биссектрисы и периметры):

Также сохраняется внутреннее отношение длин:

$displaystylefrac=frac или frac=frac$

Свойство длин сторон треугольника

Два треугольника равны, если у них соответствующие стороны равны и соответствующие углы равны (треугольники равны, если их можно совместить наложением).

Признаки подобия треугольников:

1. По двум пропорциональным сторонам и углу между ними:

Свойство длин сторон треугольника

3. По двум равным углам (тогда и третьи тоже будут равны)

Свойство длин сторон треугольника

5. По трем пропорциональным сторонам:

Свойство длин сторон треугольника

Признаки равенства треугольников:

1. По двум сторонам и углу между ними:

Свойство длин сторон треугольника

2. По стороне и двум прилежащим к ней углам.

Свойство длин сторон треугольника

3. По трем сторонам.

Свойство длин сторон треугольника

ОСОБЫЕ ТРЕУГОЛЬНИКИ И ИХ СВОЙСТВА:

«Особенными», то есть обладающими какими — то дополнительными свойствами, считаются:

  • равнобедренный,
  • равносторонний
  • прямоугольный треугольники.

РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК

Равнобедренный треугольник ― это треугольник, у которого две стороны равны (АВ = АС).

Свойство длин сторон треугольника

Равные стороны (АВ и АС) в таком треугольнике называются боковыми, а оставшаяся третья сторона (ВС) ― основанием.

Свойства равнобедренного треугольника:

1. Углы при основании равны (∠АВС = ∠АСВ).

2. Медиана, проведённая к основанию, является биссектрисой и высотой. То есть она не только делит противолежащую сторону пополам (ВМ = МС), но и падает на неё под углом 90°, а кроме того делит угол, из которого выходит, пополам (∠ВАМ = ∠МАС).

Свойство длин сторон треугольника

Посмотрим на пример конкретной задачи. В равнобедренном треугольнике внешний угол равен 80°, необходимо найти все углы треугольника. Сразу возникает вопрос ― внешний угол при каком угле треугольника? Предположим, что это внешний угол при угле В (с нашего первого рисунка). Но в таком случае выходит, что сам ∠В = 100° (по сумме смежных углов). Значит, и ∠С = 100°, так как треугольник равнобедренный. Но тогда сумма только двух углов получается 200°, чего быть никак не может. Значит, речь идёт о внешнем угле при угле А треугольника. Тогда ∠А = 100°, а ∠В = ∠С = 40°.

РАВНОСТОРОННИЙ ТРЕУГОЛЬНИК

Равносторонний треугольник ― треугольник, у которого все три стороны равны

Свойство длин сторон треугольника

Свойства равностороннего треугольника:

1. Кроме равенства сторон в таком треугольнике равны и все углы (каждый из которых по 60° ― так как 180°/3 = 60°).

2. Медиана, проведённая из любого угла, будет являться биссектрисой и высотой (другими словами, равносторонний треугольник с любой стороны является равнобедренным).

Свойство длин сторон треугольника

1. Центры вписанной и описанной окружностей совпадают.

2. Формулы 2 и 3 для площади треугольника превращаются в одну формулу:

— Через синус (так как все стороны равны и каждый угол равен 60°):

— Формула Герона (так как все стороны равны):

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Прямоугольный треугольник ― треугольник, у которого один угол равен 90° (собственно, это и есть прямой угол, дающий название всему треугольнику). Сторона, лежащая против такого угла, называется гипотенузой (АВ), а две другие стороны ― катетами (АС и ВС).

Свойство длин сторон треугольника

Свойства прямоугольного треугольника:

1. В любом прямоугольном треугольнике гипотенуза всегда больше катета (против большего угла лежит большая сторона, и наоборот).

2. Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов

Теорема, обратная теореме Пифагора: Если для сторон произвольного треугольника выполняется отношение АВ 2 = АС 2 + ВС 2 , то треугольник является прямоугольным.

3. Центр описанной вокруг прямоугольного треугольника окружности всегда лежит на середине гипотенузы (доказательство: прямой ∠С становится вписанным, а против вписанного угла в 90° всегда лежит диаметр ― значит, гипотенуза является диаметром).

Свойство длин сторон треугольника

Высота, проведенная к гипотенузе, разбивает треугольник на два подобных прямоугольных треугольника, каждый из которых подобен исходному треугольнику: $bigtriangleup ACHsimbigtriangleup HCBsimbigtriangleup ABC$

Свойство длин сторон треугольника

4. Высота, проведенная к гипотенузе, равна:

  • Произведению катетов, деленному на гипотенузу
  • Среднему геометрическому из произведений отрезков, на которые гипотенуза делится высотой

5. Медиана, проведенная к гипотенузе равна половине гипотенузы, то есть радиусу описанной около треугольника окружности.

Свойство длин сторон треугольника

6. Формулы площади прямоугольного треугольника:

1

2

3

Свойство длин сторон треугольника

Свойство длин сторон треугольника

Свойство длин сторон треугольника

Площадь прямоугольного треугольника равна половине произведения его катетов.

Площадь прямоугольного треугольника равна половине произведения гипотенузы на опущенную к ней высоту.

Площадь прямоугольного треугольника равна половине произведения его катета, гипотенузы и синуса угла между ними.

ЗОЛОТОЙ И СЕРЕБРЯНЫЙ ТРЕУГОЛЬНИКИ:

Серебряный треугольник

— треугольник с углами 45°, 45° и 90° (разрубленный по диагонали квадрат)

Свойство длин сторон треугольникаСвойство длин сторон треугольника

Отношение сторон в серебряном треугольнике:

Свойство длин сторон треугольника

Свойство длин сторон треугольникаЗолотой треугольник

Поделиться или сохранить к себе: