Говорят, что две окружности касаются, если они имеют единственную общую точку. Эта точка называется точкой касания окружностей. Касание окружностей бывает внутренним и внешним.
- Внутреннее касание
- Внешнее касание
- Касание двух окружностей
- Две окружности на плоскости. Общие касательные к двум окружностям
- Взаимное расположение двух окружностей
- Формулы для длин общих касательных и общей хорды двух окружностей
- Доказательства формул для длин общих касательных и общей хорды двух окружностей
- 🎬 Видео
Видео:КАСАЮЩИЕСЯ ОКРУЖНОСТИСкачать
Внутреннее касание
Касание называется внутренним, если центры окружностей лежат по одну сторону от точки касания окружностей. Построим две окружности, первая с центром A и радиусом AC, отметим на радиусе AC точку B, это будет центр второй окружности с радиусом BC:
Построенные окружности имеют только одну общую точку C. Говорят, что они касаются внутренним образом.
При внутреннем касании двух окружностей, расстояние между их центрами равно разности их радиусов.
Видео:ЕГЭ задание 16 Внутреннее касание двух окружностейСкачать
Внешнее касание
Касание называется внешним, если центры окружностей лежат по разные стороны от точки касания. Построим две окружности, первая с центром A и радиусом AC, вторая с центром B и радиусом BC:
Построенные окружности имеют только одну общую точку C. Говорят, что они касаются внешним образом.
При внешнем касании двух окружностей, расстояние между их центрами равно сумме их радиусов.
Видео:Пара касающихся окружностей | Осторожно, спойлер! | Борис Трушин |Скачать
Касание двух окружностей
Две окружности, имеющие общую точку, касаются в этой точке, если они имеют в ней общую касательную.
Общая точка двух окружностей называется точкой касания окружностей.
Касание окружностей может быть внешним и внутренним.
Внешнее касание окружностей — это касание, при котором центры окружностей лежат по разные стороны от общей касательной.
Внутреннее касание окружностей — касание, при котором центры окружностей лежат по одну сторону от общей касательной.
Касающиеся окружности имеют только одну общую точку — точку касания.
Центры касающихся окружностей и их общая точка касания лежат на одной прямой.
При любом виде касания по свойству касательной касательная перпендикулярна радиусам, проведённым в точку касания:
По теореме о существовании и единственности прямой, перпендикулярной данной,через точку A можно провести только одну прямую, перпендикулярную данной прямой k.
Следовательно, все три точки: центры окружностей O1, O2 и A лежат на одной прямой.
Что и требовалось доказать .
При внешнем касании расстояние между центрами окружностей равно сумме их радиусов:
При внутреннем касании расстояние между центрами окружностей равно разности радиусов:
Видео:Касание окружностейСкачать
Две окружности на плоскости.
Общие касательные к двум окружностям
Взаимное расположение двух окружностей |
Общие касательные к двум окружностям |
Формулы для длин общих касательных и общей хорды |
Доказательства формул для длин общих касательных и общей хорды |
Видео:ЕГЭ Задание 16 Три окружностиСкачать
Взаимное расположение двух окружностей
Фигура | Рисунок | Свойства |
Две окружности на плоскости | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Расстояние между центрами окружностей больше суммы их радиусов | ||
Внешнее касание двух окружностей | ||
Расстояние между центрами окружностей равно сумме их радиусов | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов r1 – r2 лежит внутри другой | ||
Внутренняя касательная к двум окружностям | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Внешнее касание двух окружностей | ||
Внешняя касательная к двум окружностям | |
Внутренняя касательная к двум окружностям | |
Внутреннее касание двух окружностей | |
Окружности пересекаются в двух точках | |
Внешнее касание двух окружностей | |
Каждая из окружностей лежит вне другой | |
Внешняя касательная к двум окружностям | |||||||||||||||||||||
Внутренняя касательная к двум окружностям | |||||||||||||||||||||
Внутреннее касание двух окружностей | |||||||||||||||||||||
Окружности пересекаются в двух точках | |||||||||||||||||||||
Внешнее касание двух окружностей | |||||||||||||||||||||
Каждая из окружностей лежит вне другой | |||||||||||||||||||||
Фигура | Рисунок | Формула | ||||||||||||
Внешняя касательная к двум окружностям | ||||||||||||||
Внутренняя касательная к двум окружностям | ||||||||||||||
Общая хорда двух пересекающихся окружностей |
Внешняя касательная к двум окружностям | ||||
Внутренняя касательная к двум окружностям | ||||
Общая хорда двух пересекающихся окружностей | ||||
Внешняя касательная к двум окружностям |
Внутренняя касательная к двум окружностям |
Общая хорда двух пересекающихся окружностей |
Длина общей хорды двух окружностей вычисляется по формуле Видео:ПЛАНИМЕТРИЯ ЕГЭ | 16 задача из 1 варианта Ященко 2021 🔴Скачать Доказательства формул для длин общих касательных и общей хорды двух окружностейУтверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3, 🎬 ВидеоЕГЭ Задание 16 Внутреннее касание двух окружностейСкачать КРАСИВАЯ ПЛАНИМЕТРИЧЕСКАЯ ЗАДАЧА (3 ОКРУЖНОСТИ)Скачать 7 класс, 21 урок, ОкружностьСкачать ОГЭ № 25. "Окружности касаются внешним образом... "Скачать Круг. Окружность | Математика 3 класс #21 | ИнфоурокСкачать Окружности соприкасаются внутренним образом.#hard (1 вариант решения)Скачать 9 класс, 8 урок, Взаимное расположение двух окружностейСкачать ✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать Всё про углы в окружности. Геометрия | МатематикаСкачать Задание 18 все типы | МАТЕМАТИКА ОГЭ 2023Скачать Задача №16. Пересекающиеся и касающиеся окружности.Скачать Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Все об окружностях на ЕГЭ | Профильная математика 2023 | УмскулСкачать |