Свойства диагоналей прямоугольного треугольника

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Свойства диагоналей прямоугольного треугольника

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Свойства диагоналей прямоугольного треугольника

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Свойства диагоналей прямоугольного треугольникаЕсли гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Свойства диагоналей прямоугольного треугольника

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Свойства диагоналей прямоугольного треугольника

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Свойства диагоналей прямоугольного треугольника

3. Теорема Пифагора:

Свойства диагоналей прямоугольного треугольника, где Свойства диагоналей прямоугольного треугольника– катеты, Свойства диагоналей прямоугольного треугольника– гипотенуза. Видеодоказательство

Свойства диагоналей прямоугольного треугольника

4. Площадь Свойства диагоналей прямоугольного треугольникапрямоугольного треугольника с катетами Свойства диагоналей прямоугольного треугольника:

Свойства диагоналей прямоугольного треугольника

5. Высота Свойства диагоналей прямоугольного треугольникапрямоугольного треугольника, проведенная к гипотенузе выражается через катеты Свойства диагоналей прямоугольного треугольникаи гипотенузу Свойства диагоналей прямоугольного треугольникаследующим образом:

Свойства диагоналей прямоугольного треугольника

Свойства диагоналей прямоугольного треугольника

6. Центр описанной окружности – есть середина гипотенузы.

Свойства диагоналей прямоугольного треугольника

7. Радиус Свойства диагоналей прямоугольного треугольникаописанной окружности есть половина гипотенузы Свойства диагоналей прямоугольного треугольника:

Свойства диагоналей прямоугольного треугольника

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус Свойства диагоналей прямоугольного треугольникавписанной окружности выражается через катеты Свойства диагоналей прямоугольного треугольникаи гипотенузу Свойства диагоналей прямоугольного треугольникаследующим образом:

Свойства диагоналей прямоугольного треугольника

Свойства диагоналей прямоугольного треугольника

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Свойства и признаки диагоналей прямоугольника — формулы и примеры расчетов

Свойства диагоналей прямоугольного треугольника

Видео:Свойства диагоналей прямоугольника. Свойства диагоналей квадрата | Математика 4 класс #9 | ИнфоурокСкачать

Свойства диагоналей прямоугольника. Свойства диагоналей квадрата | Математика 4 класс #9 | Инфоурок

Общая информация

Свойства диагоналей прямоугольного треугольника

В задачах по геометрии и физике приходится находить некоторые параметры прямоугольника: углы, стороны, периметр, площадь и диагонали. Все эти величины связаны между собой некоторыми соотношениями. Каждый должен уметь их рассчитывать, поскольку это необходимо не только для решения математических задач, но и в жизни. Например, при укладке керамзитной плитки на пол.

Используя свойство диагоналей, можно определить метод ее укладки. Кроме того, в физике иногда требуется рассчитать площадь поперечного сечения, а необходимая формула неизвестна. Во время планирования покупки строительных материалов нужно вычислить их количество, произведя вычисление площади или периметра помещения.

Однако формул для ведения расчетов недостаточно, поскольку нужно идентифицировать геометрическую фигуру. Для каждой из них применяются разные соотношения. В случае неверного определения вычисления окажутся недостоверными, а это негативно сказывается не только на экзаменах или контрольных, но и в финансовой сфере.

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Сведения о прямоугольнике

Свойства диагоналей прямоугольного треугольника

Прямоугольником называется фигура с прямыми внутренними углами между смежными сторонами, у которой противоположные стороны равны. Его частным случаем, как говорят математики, является квадрат. У него все стороны равны, а углы также являются прямыми. Не каждый может правильно определить тип фигуры, поскольку от этого шага зависит правильность вычислений какого-либо параметра.

Для каждого геометрического тела существуют определенные критерии, по которым можно узнать его принадлежность. Эти критерии называются признаками. Некоторые новички путают признаки и свойства, но существует главное отличие, которое заключено в определении терминов «признак» и «свойство». Кроме того, специалисты предлагают простой способ, позволяющий избежать путаницы между терминами.

Идентификация или признаки

Признак — некоторые критерии, по которым можно отнести фигуру к определенному типу. Свойствами называются некоторые аксиомы и утверждения, полученные при доказательстве теорем. Идентифицировать прямоугольник можно с помощью теоремы из эвклидовой геометрии. Она имеет такую формулировку: если три угла фигуры являются прямыми, то она является прямоугольником. Для доказательства нужно выполнить такие действия:

  • Вычислить значение четвертого угла: D = 360 — (90 * 3) = 90 (градусов).
  • Сопоставить сведения, полученные при вычислении, с определением.

Существуют также и другие признаки, по которым можно идентифицировать фигуру. По одному из них можно определить ее принадлежность к прямоугольнику. К признакам можно отнести такие:

Свойства диагоналей прямоугольного треугольника

  • Равенство сторон, которые противоположны между собой.
  • Внутренние углы между собой равны, а их градусная мера соответствует 90 градусам.
  • Диагонали равны между собой.
  • Сумма квадратов двух сторон, которые не противоположны, равна квадрату одной диагонали. Это следует из теоремы Пифагора, по которой находится одна из сторон прямоугольного треугольника.
  • Если прямоугольник не является квадратом, то его стороны не равны одному значению.

Первый и второй признаки получаются из основного определения фигуры. Третий признак является следствием доказательства теоремы, формулировка которой является следующей: диагонали прямоугольника равны. Она еще называется теоремой о диагоналях прямоугольника.

Для ее доказательства нужно начертить произвольный прямоугольник ABCD и провести в нем диагонали AC и BD. Они будут пересекаться в некоторой точке X. Они образуют прямоугольные треугольники ABC и ABD. В этом случае нужно доказать равенство треугольников. Они равны между собой: сторона АВ — общая, угол А равен В и сторона BC = AD (по равенству противоположных сторон). Из этого следует, что треугольники равны. Следовательно, их гипотенузы, которые также являются и диагоналями, равны.

Четвертый признак также доказывается. Следует рассматривать прямоугольный треугольник ABC. Используя теорему Пифагора, нужно выразить гипотенузу, которая является диагональю фигуры, через катеты (стороны фигуры): AC 2 = AB 2 + BC 2 . Таким способом доказывается данный признак. Последнее утверждение получается из частного случая: если у прямоугольника все стороны равны, то он является квадратом.

Свойства фигуры

Необходимо отметить, что квадрат — правильный четырехугольник, поскольку у него все стороны равны. Результирующая формула диагонали прямоугольника будет выглядеть таким образом: d = (AB 2 + BC 2 )^(½). При решении задач применяются свойства прямоугольника:

Свойства диагоналей прямоугольного треугольника

  • Каждый из углов равен 90 градусам.
  • Стороны, которые являются противолежащими и параллельными, равны.
  • Сумма углов внутри фигуры составляет 360.
  • Пересечение диагоналей в точке, которая делит их пополам, также является центром окружности, описанной вокруг фигуры и центром симметрии.
  • Треугольники, полученные в результате проведения диагоналей, равны.
  • Суммарное значение квадратичных значений всех сторон эквивалентно двойному квадрату диагонали.
  • Большой и маленький треугольники, образованные диагоналями, подобны. Следует обратить внимание на коэффициент подобия.
  • Диагональ эквивалентна диаметру окружности, описанной около фигуры.
  • Геометрическая характеристика фигуры (сумма противоположных углов составляет 180) позволяет описать вокруг нее окружность.
  • Вписать круг в прямоугольник можно тогда, когда он является правильным, т. е. ширина эквивалентна длине (квадрат).
  • Угол между смежными сторонами равен 90.
  • В любом прямоугольнике диагонали взаимно перпендикулярны, когда он является квадратом.
  • Диагонали, пересекаясь между собой, образуют не разносторонние, а прямоугольные и равносторонние треугольники.
  • Половина диагонали, проведенная из любой вершины фигуры, является медианой и высотой.
  • Диагональ является биссектрисой (прямоугольник — квадрат).
  • Средняя линия прямоугольника проходит через точку пересечения диагоналей.

Свойства диагоналей прямоугольного треугольника

Однако при решении задач свойств недостаточно. Для этого применяются специальные соотношения и формулы. Некоторые из них были получены из свойств фигуры. Во всех формулах будет браться радиус описанной окружности — R и ее диаметр — D, а также функция «sqrt», которая эквивалентна квадратному корню (x^(1/2) = x^(0.5)).

Периметр и площадь

Для удобства необходимо ввести некоторые обозначения. Диагонали следует обозначить литерой d, а противолежащие стороны — a и b, соответственно. Периметр — характеристика, соответствующая суммарному значению сторон фигуры. Очень часто ее обозначают литерой P. Существует также базовая формула: Р = 2а + 2b. Соотношение можно править таким способом: Р = 2 (a + b). Кроме того, существуют другие соотношения для определения P, когда известны некоторые параметры:

Свойства диагоналей прямоугольного треугольника

  • Величина площади и сторона, которая известна: P = (2S + 2a 2 ) / a или P = (2S + 2b 2 ) / b.
  • Диагональ и a (b): P = 2(a + (d 2 — a 2 )^(0.5)) = 2(b + (d 2 — b 2 )^(0.5)).
  • a (b) и R: P = 2(a + (4 * R 2 — a 2 )^(0.5)) = 2(b + (4 * R 2 — b 2 )^(0.5)).
  • D и a (b): P = 2(a + sqrt(D 2 — a 2 )) = 2(b + sqrt(D 2 — b 2 )).

Площадь — характеристика размерности двумерной фигуры. Ее обозначают литерой S, и измеряют в метрических единицах в квадрате (мм 2 , см 2 , м 2 и т. д.). Следует отметить, что она вычисляется интегральным методом. Однако для частных случаев существуют соотношения. Формула, которая является основанием для всех остальных соотношений, называется базовой. Она имеет такой вид: S = a * b. Площадь находится в зависимости от параметров, которые известны:

P и a (b): S = [(P * a) — 2a 2 ] / 2 = [(P * b) — 2b 2 ] / 2.

a (b) и d: S = a * sqrt[d 2 — a 2 ] = b * sqrt[d 2 — b 2 ].

Синус острого угла (Y) между двумя d и d: S = d 2 * sin (Y) / 2.

R и a (b): S = a * sqrt[4 * R 2 — a 2 ] = b * sqrt[4 * R 2 — b 2 ].

D и a (b): S = a * sqrt[D 2 — a 2 ] = b * sqrt[D 2 — b 2 ].

Для решения различных задач также могут быть полезны и другие соотношения, позволяющие найти не только диагонали, но и стороны прямоугольника.

Диагонали и стороны

Для оптимизации решения нужно знать формулы, с помощью которых можно находить одну из сторон или диагональ прямоугольника. Необходимо разобрать основные соотношения, по которым находятся стороны фигуры, когда известны следующие параметры:

  • d и a (b): a = sqrt[d 2 — b 2 ] и b = sqrt[d 2 — a 2 ].
  • S и a (b): a = S / b и b = S / a.
  • P и a (b): a = (P — 2b) / 2 и b = (P — 2a) / 2.

Для нахождения диагонали также есть некоторые формулы. Для их применения следует знать такие параметры фигуры:

a и b: d = [a 2 + b 2 ]^(1/2).

S и a (b): d = (S 2 + a 4 )^(1/2) / a= (S 2 + b 4 )^(1/2) / b.

P и a (b): d = (P 2 — 4Pa + 8a 2 )^(1/2) / 2 = (P 2 — 4Pb + 8b 2 )^(1/2) / 2.

Однако это не все соотношения. В некоторых случаях разрешается описывать окружность вокруг фигуры. С помощью такого «геометрического хода» можно существенно упростить решение задачи. Это позволяет воспользоваться другими формулами.

Другие соотношения

Для решения задач используются и другие соотношения, которые позволяют найти параметры окружности, которая описана. Пусть дана окружность с радиусом R и диаметром D. Кроме того, известны некоторые параметры фигуры (a, b, d, P и S). С помощью формул можно найти D и R окружности при известных некоторых величинах:

a и b: R = (a 2 + b 2 )^(1/2) / 2.

P и a (b): R = (P 2 — 4Pa + 8a 2 )^(1/2) / 4 = (P 2 — 4Pb + 8b 2 )^(1/2) / 4.

S и a (b): R = (S 2 + a 4 )^(1/2) / 2a = (S 2 + b 4 )^(1/2) / 2b.

  • d: R = d / 2.
  • sin(F), прилегающего к диагонали и стороне, и a: R = a / 2sin (F).
  • cos(F) и b: R = b / 2cos (F).
  • Для нахождения угла F следует воспользоваться такой формулой: sin (F) = a / d и cos (F) = b / d. Острый угол между двумя диагоналями определяется при помощи такого соотношения: sin (Y) = 2S / d 2 .

    Видео:Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать

    Свойство медианы в прямоугольном треугольнике. 8 класс.

    Пример решения

    Пусть дана некоторая фигура, диагонали которой равны, а ее периметр равен 50. Одна из сторон a = 10. Следует провести идентификацию, а также найти такие параметры:

    Свойства диагоналей прямоугольного треугольника

    • Другие стороны.
    • Значения диагоналей.
    • Площадь.
    • R описанной окружности через площадь и периметр.
    • Выяснить возможность укладки плитки в форме квадрата на такую поверхность.
    • Вычислить значения всех углов между смежными сторонами.

    Данная задача является типом сложного класса, поскольку название фигуры не упоминается. Ее следует идентифицировать, а затем применить некоторые формулы для решения. Кроме того, необходимо верно выполнить 5 пункт. Однако не следует углубляться в строительную сферу. Бывают два метода укладки плитки: обычный — форма помещения является прямоугольником или квадратом, и с центра — другая фигура.

    Свойства диагоналей прямоугольного треугольника

    У фигуры диагонали равны, значит по третьему признаку она является прямоугольником. К нему можно применять вышеописанные формулы. Для нахождения другой стороны следует составить уравнение 2x + 2 * 10 = 50. Затем нужно перенести все известные значения в правую часть: 2х = 50 — 20. Далее можно найти переменную: х = 30 / 2 = 15 (ед.). Следует обратить внимание на написание единицы измерения. Если в условии задачи она не указана, то пишется единица измерения, которая заключается в круглые скобки. Достаточно найти только одну сторону, поскольку у прямоугольника существует свойство равенства противоположных сторон.

    Значение диагоналей находится по формуле: d = [a 2 + b 2 ]^(1/2) = (15 2 + 10 2 )^(1/2) = (225 +100)^(1/2) = (325)^(1/2). Площадь можно найти таким образом: S = a * b = 15 * 10 = 150 [(ед.)^2]. Радиус вычисляется так:

    R = (P 2 — 4Pa + 8a 2 )^(1/2) / 4 = (50 2 — 4 * 50 * 10 + 8 * 10 2 )^(1/2) / 4 = (1300)^(1/2) / 4 (ед.).

    R = (S 2 + a 4 )^(1/2) / 2a = (150 2 + 100 4 )^(1/2) / (2 * 10) = (1300)^(1/2) / 4 (ед.).

    Плитку можно укладывать обыкновенным способом, начиная не с центра, поскольку поверхность является прямоугольником. Все углы между сторонами равны между собой. Их градусная мера по 12 свойству соответствует 90.

    Таким образом, при решении задач рекомендуется идентифицировать геометрическую фигуру, а затем применять к ней формулы.

    Видео:Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать

    Свойства прямоугольного треугольника. Практическая часть.  7 класс.

    Прямоугольник и его свойства

    Прямоугольник — это параллелограмм, у которого все углы прямые.

    Диагонали прямоугольника равны.

    Свойства диагоналей прямоугольного треугольника

    1. В прямоугольнике диагональ делит угол в отношении , меньшая его сторона равна . Найдите диагональ данного прямоугольника.

    Свойства диагоналей прямоугольного треугольника

    Всё просто. Рассмотрите прямоугольный треугольник . Найдите, чему равен угол и его синус, а затем найдите .

    А сейчас рассмотрим еще одну задачу, в которой применяются свойства диагоналей прямоугольника.

    2 . Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

    Свойства диагоналей прямоугольного треугольника

    Казалось бы, при чем здесь прямоугольник? Дан прямоугольный треугольник, из вершины прямого угла проведены высота и медиана. А что можно сказать о длине этой медианы?

    Давайте достроим чертеж до прямоугольника. Поскольку диагонали прямоугольника равны (это свойство прямоугольника) и делятся пополам в точке пересечения, отрезки , и тоже будут равны. Каждый из них равен половине диагонали прямоугольника. Мы доказали теорему:

    В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

    Итак, , значит, треугольник равнобедренный, и угол равен .

    По свойству высоты, проведенной из вершины прямого угла,
    .

    Тогда угол (между медианой и высотой треугольника ) равен .
    Ответ: .

    Как вы думаете, где находится центр окружности, описанной вокруг прямоугольного треугольника? Ведь центр описанной окружности — точка, равноудаленная от всех вершин треугольника. Очевидно, эта точка — середина гипотенузы.

    В прямоугольном треугольнике центром описанной окружности является середина гипотенузы.

    1 . Найдите диагональ прямоугольника, вписанного в окружность, радиус которой равен .

    Свойства диагоналей прямоугольного треугольника

    Свойства диагоналей прямоугольного треугольника
    Получим, что равна .
    Ответ: .

    🔍 Видео

    Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

    Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

    7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

    7 класс, 35 урок, Некоторые свойства прямоугольных треугольников

    Свойства диагоналей прямоугольникаСкачать

    Свойства диагоналей прямоугольника

    Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

    Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс

    Высота в прямоугольном треугольнике. 8 класс.Скачать

    Высота в прямоугольном треугольнике. 8 класс.

    Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

    Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

    Математика | ЗАДАЧА 22 из ОГЭ. Задачи на работуСкачать

    Математика |  ЗАДАЧА 22 из ОГЭ. Задачи на работу

    Геометрия 7 класс : Свойства прямоугольного треугольникаСкачать

    Геометрия 7 класс : Свойства прямоугольного треугольника

    Свойства проекций катетов | Геометрия 8-9 классыСкачать

    Свойства проекций катетов | Геометрия 8-9 классы

    Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

    Решение прямоугольных треугольников. Практическая часть. 8 класс.

    Свойства диагоналей параллелограмма | Геометрия 8-9 классыСкачать

    Свойства диагоналей параллелограмма | Геометрия 8-9 классы

    Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

    Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

    Как только вы УЗНАЕТЕ, как мыслить в четырех измерениях, вы сможете УВИДЕТЬ НЕВИДИМОЕСкачать

    Как только вы УЗНАЕТЕ, как мыслить в четырех измерениях, вы сможете УВИДЕТЬ НЕВИДИМОЕ

    Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?Скачать

    Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?

    Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

    Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс
    Поделиться или сохранить к себе: