Сторона правильного четырехугольника описанного около окружности с радиусом

Чему равна сторона правильного четырёхугольника, описанного около окружности радиуса R?

Видео:Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Ваш ответ

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,006
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Калькулятор расчета стороны правильного многоугольника через радиусы окружностей

В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.

Видео:Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Расчет длины стороны

Сторона правильного четырехугольника описанного около окружности с радиусом

Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Четырехугольники, вписанные в окружность. Теорема Птолемея

Сторона правильного четырехугольника описанного около окружности с радиусомВписанные четырехугольники и их свойства
Сторона правильного четырехугольника описанного около окружности с радиусомТеорема Птолемея

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Сторона правильного четырехугольника описанного около окружности с радиусом

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Сторона правильного четырехугольника описанного около окружности с радиусом

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Сторона правильного четырехугольника описанного около окружности с радиусом
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Сторона правильного четырехугольника описанного около окружности с радиусом

ФигураРисунокСвойство
Окружность, описанная около параллелограммаСторона правильного четырехугольника описанного около окружности с радиусомОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаСторона правильного четырехугольника описанного около окружности с радиусомОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииСторона правильного четырехугольника описанного около окружности с радиусомОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаСторона правильного четырехугольника описанного около окружности с радиусомОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникСторона правильного четырехугольника описанного около окружности с радиусом

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Сторона правильного четырехугольника описанного около окружности с радиусом
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Сторона правильного четырехугольника описанного около окружности с радиусом

Окружность, описанная около параллелограмма
Сторона правильного четырехугольника описанного около окружности с радиусомОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Сторона правильного четырехугольника описанного около окружности с радиусомОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Сторона правильного четырехугольника описанного около окружности с радиусомОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Сторона правильного четырехугольника описанного около окружности с радиусомОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Сторона правильного четырехугольника описанного около окружности с радиусом
Окружность, описанная около параллелограмма
Сторона правильного четырехугольника описанного около окружности с радиусом

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаСторона правильного четырехугольника описанного около окружности с радиусом

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииСторона правильного четырехугольника описанного около окружности с радиусом

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаСторона правильного четырехугольника описанного около окружности с радиусом

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникСторона правильного четырехугольника описанного около окружности с радиусом

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Сторона правильного четырехугольника описанного около окружности с радиусом

Сторона правильного четырехугольника описанного около окружности с радиусом

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Сторона правильного четырехугольника описанного около окружности с радиусом

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Сторона правильного четырехугольника описанного около окружности с радиусом

Докажем, что справедливо равенство:

Сторона правильного четырехугольника описанного около окружности с радиусом

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Сторона правильного четырехугольника описанного около окружности с радиусом

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Сторона правильного четырехугольника описанного около окружности с радиусом

откуда вытекает равенство:

Сторона правильного четырехугольника описанного около окружности с радиусом(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

🔍 Видео

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Нахождение радиуса описанной окружности около правильного четырехугольникаСкачать

Нахождение радиуса описанной окружности около правильного четырехугольника

Задача 6 №27892 ЕГЭ по математике. Урок 126Скачать

Задача 6 №27892 ЕГЭ по математике. Урок 126

ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать

ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематика

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписаннойСкачать

112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной

2131 Три стороны описанного около окружности четырёхугольника относятся в последовательном порядкеСкачать

2131 Три стороны описанного около окружности четырёхугольника относятся в последовательном порядке

Четырехугольник, описанный около окружности | Геометрия 8-9 классыСкачать

Четырехугольник, описанный около окружности | Геометрия 8-9 классы

ОГЭ. Задача на описанную окружность № 16. Как легко решить задачуСкачать

ОГЭ. Задача на описанную окружность № 16. Как легко решить задачу

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)
Поделиться или сохранить к себе: