Сопряжение треугольника в черчении

Сопряжения

В этой небольшой статье, будут рассмотрены основные виды сопряжений и Вы узнаете о том, как построить сопряжение углов, прямых линий, окружностей и дуг, окружностей с прямой.

Сопряжением называют плавный переход одной линии в другую. Для того чтобы построить сопряжение, нужно найти центр сопряжения и точки сопряжений.

Точка сопряжения – это общая точка для сопрягаемых линий. Точку сопряжения также называют точкой перехода.

Ниже будут рассмотрены основные типы сопряжений.

Содержание
  1. Сопряжение углов (Сопряжение пересекающихся прямых)
  2. Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)
  3. Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)
  4. Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)
  5. Сопряжение параллельных прямых линий
  6. Сопряжение окружностей(дуг) с прямой линией
  7. Внешнее сопряжение дуги и прямой линии
  8. Внутреннее сопряжение прямой линии с дугой
  9. Сопряжение окружностей (дуг)
  10. Внешнее сопряжение дуг окружностей
  11. Внутреннее сопряжение дуг окружностей
  12. Смешанное сопряжение дуг окружностей
  13. Сопряжения в инженерной графике на чертежах с примерами
  14. Сопряжение двух пересекающихся прямых линий
  15. Сопряжения прямой с окружностью
  16. Сопряжение двух окружностей
  17. Построение касательных
  18. Сопряжение треугольника в черчении
  19. СОПРЯЖЕНИЕ ДВУХ СТОРОН УГЛА ДУГОЙ ОКРУЖНОСТИ ЗАДАННОГО РАДИУСА
  20. СОПРЯЖЕНИЕ ПРЯМОЙ С ДУГОЙ ОКРУЖНОСТИ
  21. СОПРЯЖЕНИЕ ДУГИ С ДУГОЙ
  22. 📺 Видео

Видео:Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Сопряжение углов (Сопряжение пересекающихся прямых)

Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)

В данном примере будет рассмотрено построение сопряжения прямого угла заданным радиусом сопряжения R. Первым делом найдём точки сопряжения. Для нахождения точек сопряжения, нужно поставить циркуль в вершину прямого угла и провести дугу радиусом R до пересечения со сторонами угла. Полученные точки и будут являться точками сопряжения. Далее нужно найти центр сопряжения. Центром сопряжения будет точка равноудалённая от сторон угла. Проведём из точек a и b две дуги радиусом сопряжения R до пересечения друг с другом. Полученная на пересечении точка О и будет центром сопряжения. Теперь из центра сопряжения точки О описываем дугу радиусом сопряжения R от точки a до точки b. Сопряжение прямого угла построено.

Сопряжение треугольника в черчении

Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)

Ещё один пример сопряжения угла. В этом примере будет построено сопряжение
острого угла
. Для построения сопряжения острого угла раствором циркуля,равным радиусу сопряжения R, проведём из двух произвольных точек на каждой стороне угла по две дуги. Затем проведём касательные к дугам до пересечения в точке О, центре сопряжения. Из полученного центра сопряжения опустим перпендикуляр к каждой из сторон угла. Так мы получим точки сопряжения a и b. Затем проведём из центра сопряжения, точки О, дугу радиусом сопряжения R, соединив точки сопряжения a
и b. Сопряжение острого угла построено.

Сопряжение треугольника в черчении

Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)

Сопряжение тупого угла строится по аналогии с сопряжением острого угла. Мы также, сначала радиусом сопряжения R проводим по две дуги из двух произвольно взятых точек на каждой из сторон, а затем проводим касательные к этим дугам до пересечения в точке О, центре сопряжения. Затем опускаем перпендикуляры из центра сопряжения к каждой из сторон и соединяем дугой, равной радиусу сопряжения тупого угла R, полученные точки a и b.

Сопряжение треугольника в черчении

Видео:1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Сопряжение параллельных прямых линий

Построим сопряжение двух параллельных прямых. Нам задана точка сопряжения a, лежащая на одной прямой. Из точки a проведём перпендикуляр до пересечения его с другой прямой в точке b. Точки a и b являются точками сопряжения прямых линий. Проведя из каждой точки дугу, радиусом больш отрезка ab, найдём центр сопряжения — точку О. Из центра сопряжения проведём дугу заданного радиуса сопряжения R.

Сопряжение треугольника в черчении

Видео:Сопряжение окружностейСкачать

Сопряжение окружностей

Сопряжение окружностей(дуг) с прямой линией

Внешнее сопряжение дуги и прямой линии

В этом примере будет построено сопряжение заданным радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиусом R.

Сначала найдём центр сопряжения. Для этого проведём прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса сопряжения r, и дугу, из центра окружности O R радиусом R+r. Точка пересечения дуги и прямой и будет центром сопряжения – точкой О r .

Из центра сопряжения, точки О r , опустим перпендикуляр на прямую AB. Точка D, полученная на пересечении перпендикуляра и отрезка AB, и будет точкой сопряжения. Найдём вторую точку сопряжения на дуге окружности. Для этого соединим центр окружности О R и центр сопряжения О r линией. Получим вторую точку сопряжения – точку C. Из центра сопряжения проведём дугу сопряжения радиусом r, соединив точки сопряжения.

Сопряжение треугольника в черчении

Внутреннее сопряжение прямой линии с дугой

По аналогии строится внутреннее сопряжение прямой линии с дугой. Рассмотрим пример построения сопряжения радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиуса R. Найдём центр сопряжения. Для этого построим прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса r, и дугу, из центра окружности O R радиусом R-r. Точка О r , полученная на пересечении прямой и дуги, и будет центром сопряжения.

Из центра сопряжения(точка О r ) опустим перпендикуляр на прямую AB. Точка D, полученная на основании перпендикуляра, и будет точкой сопряжения.

Для нахождения второй точки сопряжения на дуге окружности, соединим центр сопряжения Оr и центр окружности О R прямой линией. На пересечении линии с дугой окружности получим вторую точку сопряжения – точку C. Из точки О r , центра сопряжения, проведём дугу радиусом r, соединив точки сопряжения.

Сопряжение треугольника в черчении

Видео:Внешнее сопряжение двух дуг окружностей третьей дугой. Урок13.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Внешнее сопряжение двух дуг окружностей третьей дугой. Урок13.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Сопряжение окружностей (дуг)

Внешнее сопряжение дуг окружностей

Внешним сопряжением считается сопряжение, при котором центры сопрягаемых окружностей(дуг) O1( радиус R1) и O2 (радиус R2) располагаются за сопрягающей дугой радиуса R. На примере рассмотрено внешнее сопряжение дуг. Сначала находим центр сопряжения. Центром сопряжения является точка пересечения дуг окружностей с радиусами R+R1 и R+R2, построенных из центров окружностей O1(R1) и O2(R2) соответственно. Затем центры окружностей O1 и O2 соединяем прямыми с центром сопряжения, точкой O, и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. После этого, из центра сопряжения строим дугу заданного радиуса сопряжения R и соединяем ей точки A и B.

Сопряжение треугольника в черчении

Внутреннее сопряжение дуг окружностей

Внутренним сопряжением называется сопряжение, при котором центры сопрягаемых дуг O1, радиуса R1, и O2, радиус R2, располагаются внутри сопрягающей их дуги заданного радиуса R. На картинке ниже приведён пример построения внутреннего сопряжения окружностей(дуг). Вначале мы находим центр сопряжения, которым является точка O, точка пересечения дуг окружностей с радиусами R-R1 и R-R2 проведённых из центров окружностей O1и O2 соответственно. После чего соединяем центры окружностей O1 и O2 прямыми линиями с центром сопряжения и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. Затем из центра сопряжения строим дугу сопряжения радиуса R и строим сопряжение.

Сопряжение треугольника в черчении

Смешанное сопряжение дуг окружностей

Смешанным сопряжением дуг является сопряжение, при котором центр одной из сопрягаемых дуг (O1) лежит за пределами сопрягающей их дуги радиуса R, а центр другой окружности(O2) – внутри её. На иллюстрации ниже приведён пример смешанного сопряжения окружностей. Сначала находим центр сопряжения, точку O. Для нахождения центра сопряжения строим дуги окружностей с радиусами R+R1, из центра окружности радиуса R1 точки O1, и R-R2, из центра окружности радиуса R2 точки O2. После чего соединяем центр сопряжения точку O с центрами окружностей O1 и O2 прямыми и на пересечении с линиями соответствующих окружностей получаем точки сопряжения A и B. Затем строим сопряжение.

Видео:Построение ВНЕШНЕГО СОПРЯЖЕНИЯСкачать

Построение ВНЕШНЕГО СОПРЯЖЕНИЯ

Сопряжения в инженерной графике на чертежах с примерами

Содержание:

В очертаниях технических форм часто встречаются плавные переходы от од- ной линии к другой. Плавный переход одной линии в другую, выполненный при помощи промежуточной линии, называется сопряжением. Построение сопряжений основано на следующих положениях геометрии.

  1. Переход окружности в прямую будет плавным только тогда, когда заданная прямая является касательной к окружности (рис. 11а). Радиус окружности, проведенный в точку касания К, перпендикулярен к касательной прямой.
  2. Переход от одной окружности к другой в точке К только тогда будет плавным, когда окружности имеют в данной точке общую касательную (рис. 11б).

Сопряжение треугольника в черчении

Точка касания К и центры окружностей Сопряжение треугольника в черчении

  • Центром сопряжения О называется точка, равноудаленная от сопрягаемых линий (рис. 12).
  • Точкой сопряжения А (В) называется точка касания двух сопрягаемых линий (рис. 12).
  • Дуга сопряжения АВ – это дуга окружности, с помощью которой выполняется сопряжение (рис. 12).
  • Радиус сопряжения R – это радиус дуги сопряжения (рис. 12).

Для выполнения сопряжений необходимо определить три элемента построения: 1) радиус сопряжения; 2) центр сопряжения; 3) точки сопряжения.

Видео:Сопряжение острого углаСкачать

Сопряжение острого угла

Сопряжение двух пересекающихся прямых линий

Пусть даны две пересекающиеся прямые m, n и радиус сопряжения R (рис. 12). Необходимо построить сопряжение данных прямых дугой окружности радиусом R.

Сопряжение треугольника в черчении

Выполним следующие построения:

  1. Построим множество точек центров сопряжения, удаленных от прямой n на расстояние радиуса R сопряжения. Таким множеством является прямая Сопряжение треугольника в черчениипараллельная данной прямой n и отстоящая от неё на расстояние R.
  2. Построим множество точек центров сопряжения, удаленных от прямой m на расстояние радиуса сопряжения. Таким множеством является прямая Сопряжение треугольника в черчениипараллельная m и отстоящая от последней на расстояние R.
  3. В пересечении построенных прямых Сопряжение треугольника в черчениинайдем центр сопряжения О.
  4. Определим точку А сопряжения на прямой n. Для этого опустим из центра О перпендикуляр на прямую n . Для определения точки сопряжения В на прямой m необходимо опустить соответственно перпендикуляр из центра О на прямую m.

Проведем дугу сопряжения AB. Теперь будут определены все элементы сопряжения: радиус, центр и точки сопряжения.

Видео:Черчение. Внутреннее, внешнее и смешенное сопряжение двух окружностей.Скачать

Черчение. Внутреннее, внешнее и смешенное сопряжение двух окружностей.

Сопряжения прямой с окружностью

Сопряжение прямой с окружностью может быть внешним или внутренним. Рассмотрим построение внешнего сопряжения прямой с окружностью.

Пример 1. Пусть задана окружность радиусом R с центром в точке Сопряжение треугольника в черчениии прямая m. Требуется построить сопряжение окружности с прямой дугой окружности заданного радиуса R (рис. 13).

Для решения задачи выполним следующие построения:

  1. Построим множество точек центров сопряжения, удаленных от сопрягаемой прямой на расстояние R. Это множество задает прямая Сопряжение треугольника в черчениипараллельная m и отстоящая от неё на расстояние R.
  2. Множество точек центров сопряжения, удаленных от окружности n на рас- стояние R, есть окружность Сопряжение треугольника в черчениипроведенная радиусом Сопряжение треугольника в черчении
  3. Центр сопряжения О находим как точку пересечения линий Сопряжение треугольника в черчении
  4. Точку сопряжения А находим как основание перпендикуляра, проведенного из точки О на прямую m. Чтобы построить точку сопряжения В, необходимо про- вести линию центров Сопряжение треугольника в черчениит.е. соединить центры сопряженных дуг. В пересечении линии центров с заданной окружностью определим точку В.
  5. Проведем дугу сопряжения АВ.

Сопряжение треугольника в черченииСопряжение треугольника в черчении

Пример 2. При построении внутреннего сопряжения (рис. 14) последовательность построений остается та же, что и в примере 1. Однако центр сопряжения определяется с помощью вспомогательной дуги окружности, проведенной из центра Сопряжение треугольника в черчении, радиусом Сопряжение треугольника в черчении

Видео:Черчение "Сопряжения в углах равностороннего треугольника"Скачать

Черчение "Сопряжения в углах равностороннего треугольника"

Сопряжение двух окружностей

Сопряжение двух окружностей может быть внешним, внутренним и смешанным. Пусть задан радиус сопряжения R, а центры сопряжения и точки сопряжения следует найти.

Пример 1. Построим сопряжение с внешним касанием двух данных окружностей m и n с радиусами Сопряжение треугольника в черчениидугой заданного радиуса R (рис. 15а).

  1. Для нахождения центра сопряжения О проведем окружность Сопряжение треугольника в черченииудаленную от данной окружности m на расстояние R . Так как сопряжение с внешним касанием, то радиус окружности Сопряжение треугольника в черченииравен Сопряжение треугольника в черчении
  2. Радиусом Сопряжение треугольника в черчениипроведем окружность Сопряжение треугольника в черчении, удаленную от данной окружности n на расстояние R.
  3. Найдем центр сопряжения О как точку пересечения окружностей Сопряжение треугольника в черчении.
  4. Найдем точку сопряжения А как пересечение линии центров Сопряжение треугольника в черчениис дугой m.
  5. Аналогично найдем точку В как пересечение линии центров Сопряжение треугольника в черчениис дугой n .
  6. Проведем дугу сопряжения АВ.

Сопряжение треугольника в черчении

Пример 2. Построим сопряжение с внутренним касанием двух данных окружностей m и n с радиусами Сопряжение треугольника в черчениидугой радиусом R (рис. 15б).

  1. Для нахождения центра сопряжения О проведем окружность Сопряжение треугольника в черчениина расстоянии Сопряжение треугольника в черченииот данной окружности m.
  2. Проведем окружность Сопряжение треугольника в черчениина расстоянии Сопряжение треугольника в черченииот данной окружности n.
  3. Центр сопряжения О найдем как точку пересечения окружностей Сопряжение треугольника в черчении
  4. Точку сопряжения А найдем как точку пересечения линии центров Сопряжение треугольника в черчениис заданной окружностью m.
  5. Точку сопряжения В найдем как точку пересечения линии центров Сопряжение треугольника в черченииc заданной окружностью n.
  6. Проведем дугу сопряжения AВ с центром в точке O.

Пример 3. На рис. 16 приведен пример построения сопряжения с внешне- внутренним касанием.

Сопряжение треугольника в черчении

Видео:Построение ВНУТРЕННЕГО СОПРЯЖЕНИЯСкачать

Построение ВНУТРЕННЕГО СОПРЯЖЕНИЯ

Построение касательных

Пример 1. Дана окружность с центром в точке Сопряжение треугольника в черчениии точка Сопряжение треугольника в черчениивне её. Через данную точку Сопряжение треугольника в черчениипровести касательную к данной окружности (рис. 17).

Сопряжение треугольника в черчении

Для решения задачи выполним следующие построения.

  1. Соединим точку Сопряжение треугольника в черчениис центром окружности Сопряжение треугольника в черчении
  2. Находим середину С отрезка Сопряжение треугольника в черчении
  3. Из точки С, как из центра, проведем вспомогательную окружность радиусом Сопряжение треугольника в черчении
  4. В точке пересечения вспомогательной окружности с заданной получим точку касания А. Соединим точку Сопряжение треугольника в черчениис точкой А.

Пример 2. Построим общую касательную АВ к двум заданным окружностям радиусов Сопряжение треугольника в черчении(рис. 18).

Сопряжение треугольника в черчении

  1. Находим середину С отрезка Сопряжение треугольника в черчении
  2. Из точки С, как из центра, радиусом Сопряжение треугольника в черчениипроведем вспомогательную окружность.
  3. Из центра большей окружности Сопряжение треугольника в черчениипроведем вторую вспомогательную окружность радиусом Сопряжение треугольника в черчении
  4. Пересечение двух вспомогательных окружностей определяет точку К, через которую проходит радиус Сопряжение треугольника в черченииидущий в точку касания В. 5. Для построения второй точки касания А проведем Сопряжение треугольника в черчении
  5. Соединим точки А и В отрезком прямой линии.
Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Нанесение размеров на чертежах
  • Резьба на чертеже
  • Соединения разъемные и неразъемные в инженерной графике
  • Виды конструкторских документов
  • Виды в инженерной графике
  • Разрезы в инженерной графике
  • Сечения в инженерной графике
  • Выносные элементы в инженерной графике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Внутреннее сопряжение двух дуг окружностей третьей дугой. Урок14.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Внутреннее сопряжение двух дуг окружностей третьей дугой. Урок14.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Сопряжение треугольника в черчении

При вычерчивании деталей машин и приборов, кон­туры очертаний которых состоят из прямых линий и дуг окружностей с плавными переходами от одной линии в другую, часто применяют сопряжения. Сопря­жением называется плавный переход одной линии в другую. На рис. 60 показаны примеры применения сопряжений.

Сопряжение треугольника в черчении

Контур рычага (рис. 60а) состоит из отдельных линий, плавно переходящих одна в другую, например, в точках А, А1 виден плавный переход от дуги окруж­ности к прямой линии, а в точках В, В1 — от дуги одной окружности к дуге другой окружности (рис. 60, б). На рис. 60, в изображен двурогий крюк. На чертеже кон­тура крюка (рис. 60, г) в точке А виден плавный пере­ход от дуги окружности D=200 к прямой линии, а в точке В — от дуги окружности радиуса R460 к дуге ра­диуса R260.

Для точного и правильного выполнения чертежей необходимо уметь выполнять построения сопряжений, которые основаны на двух положениях.

  1. Для сопряжения прямой линии и дуги необходимо, чтобы центр окружности, которой принадлежит дуга, лежал на перпендикуляре к прямой, восставленном из точки сопряжения (рис. 61, а).
  2. Для сопряжения двух дуг необходимо, чтобы центры окружностей, которым принадлежат дуги, ле­жали на прямой, проходящей через точку сопряжения (рис. 61, 6).

Сопряжение треугольника в черчении

СОПРЯЖЕНИЕ ДВУХ СТОРОН УГЛА ДУГОЙ ОКРУЖНОСТИ ЗАДАННОГО РАДИУСА

При выполнении чертежей деталей, показанных на рис. 62, б, г, е, выполняют построение сопряжения двух сторон угла дугой окружности заданного радиуса. На рис. 62, а выполнено построение сопряжения сто­рон острого угла дугой, на рис. 62, в — тупого угла, на рис. 62, д — прямого.

Сопряжение двух сторон угла (острого или тупого) дугой заданного радиуса R выполняют следующим образом (рис. 62, а и в).

Параллельно сторонам угла на расстоянии, равном радиусу дуги R, проводят две вспомогательные прямые линии. Точка пересечения этих прямых (точка О) будет центром дуги радиуса Я, т. е. центром сопряже­ния. Из центра О описывают дугу, плавно переходя­щую в прямые — стороны угла. Дугу заканчивают в точках сопряжения n и n1 которые являются Основаниями перпендикуляров, опущенных из центра О на сто­роны угла.

Сопряжение треугольника в черчении

При построении сопряжения сторон прямого угла центр дуги сопряжения проще находить с помощью циркуля (рис. 62, д). Из вершины угла А проводят дугу радиусом R, равным радиусу сопряжения. На сторонах угла получают точки сопряжения n и n1 . Из этих точек, как из центров, проводят дуги радиусом R до взаим­ного пересечения в точке О, являющейся центром со­пряжения. Из центра О описывают дугу сопряжения.

СОПРЯЖЕНИЕ ПРЯМОЙ С ДУГОЙ ОКРУЖНОСТИ

Сопряжение прямой с дугой окружности может быть выполнено при помощи дуги с внутренним касанием (рис. 63, в) и дуги с внешним касанием (рис. 63, а).

На рис. 63, а показано сопряжение дуги окружности радиусом R и прямой линии А В дугой окружности радиуса r с внешним касанием. Для построения такого сопряжения проводят окружность радиуса R и прямую АВ. Параллельно заданной прямой на расстоянии, рав­ном радиусу r (радиус сопрягающей дуги), проводят прямую ab. Из центра О проводят дугу окружности

Сопряжение треугольника в черчении

радиусом, равным сумме радиусов и r, до пересече­ния ее с прямой ab в точке О1 Точка О1 является цент­ром дуги сопряжения.

Точку сопряжения с находят на пересечении прямой 00 1 с дугой окружности радиуса R. Точка сопряжения C1 является основанием перпендикуляра, опущенного из центра О1 на данную прямую При помощи ана­логичных построений могут быть найдены точки 02,

На рис. 63, б показан кронштейн, при вычерчивании контура которого необходимо выполнить построения, описанные выше.

На рис. 63, в выполнено сопряжение дуги радиуса R с прямой А В дугой радиуса r с внутренним касанием. Центр дуги сопряжения О1 находится на пересечении вспомогательной прямой, проведенной параллельно данной прямой на расстоянии r, с дугой вспомогатель­ной окружности, описанной из центра О радиусом, рав­ным разности Rr. Точка сопряжения является основанием перпендикуляра, опущенного из точки О1 на данную прямую. Точку сопряжения с находят на пересечении прямой ОО1 с сопрягаемой дугой. Такое сопряжение выполняют, например, при вычерчивании контура маховика, показанного на рис. 63, г.

СОПРЯЖЕНИЕ ДУГИ С ДУГОЙ

Сопряжение двух дуг окружностей может быть вну­тренним, внешним и смешанным.

При внутреннем сопряжении центры O и O1 сопря­гаемых дуг находятся внутри сопрягающей дуги ради­уса R (рис. 64, б).

При внешнем сопряжении центры и сопрягае­мых дуг радиусов R1 и R2 находятся вне сопрягающей дуги радиуса R (рис. 64, в).

При смешанном сопряжении центр О, одной из сопрягаемых дуг лежит внутри сопрягающей дуги

Сопряжение треугольника в черчении

радиуса R, а центр О другой сопрягаемой дуги вне ее (рис. 65, а).

На рис. 64, а показана деталь (серьга), при вычерчи­вании которой необходимо построение внутреннего и внешнего сопряжения.

Построение внутреннего сопряжения.

а) радиусы сопрягаемых окружностей R1 и R2

б) расстояния l1 и l2 между центрами этих дуг;

в) радиус R сопрягающей дуги.

а) определить положение центра 02 сопрягающей дуги;

б) найти точки сопряжения s1 и s

в) провести дугу сопряжения.

Построение сопряжения показано на рис. 64, б. По заданным расстояниям между центрами 11 и l2 на чер­теже намечают центры О и O1 из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О1 про­водят вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R2, а из центра О — радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R1 Вспомогательные дуги пересекутся в точке 02 которая и будет искомым центром сопрягающей дуги.

Для нахождения точек сопряжения точку 02 соеди­няют с точками О и О1 прямыми линиями. Точки пере­сечения продолжения прямых 020 и 020 с сопрягае­мыми дугами являются искомыми точками сопряжения (точки S и s1).

Радиусом R из центра Ог проводят сопрягающую дугу между точками сопряжения s и s1

Построение внешнего сопряжения.

б) расстояния и l2 между центрами этих дуг;

в) радиус R сопрягающей дуги.

Сопряжение треугольника в черчении

а) определить положение центра 02 сопрягающей дуги;

б) найти точки сопряжения и s1;

в) провести дугу сопряжения.

Построение внешнего сопряжения показано на рис. 64, в. По заданным расстояниям между центрами l1 и l2 на чертеже находят точки О и О1 из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1, и сопряга­ющей R, а из центра О1 — радиусом, равным сумме

радиусов сопрягаемой дуги R2 и сопрягающей R. Вспо­могательные дуги пересекутся в точке O2, которая будет искомым центром сопрягающей дуги Для нахождения точек сопряжения центры дуг сое-

Сопряжение треугольника в черчении

диняют прямыми линиями 002 и 0102. Эти две пря­мые пересекают сопрягаемые дуги в точках сопряже­ния S и s1

Из центра 02 радиусом R проводят сопрягающую ду­гу, ограничивая ее точками сопряжения и

Построение смешанного сопряжения. Пример сме­шанного сопряжения приведен на рис. 65, и где изображены кронштейн и его чертеж.

б) расстояния l1 и l2 между центрами этих дуг;

в) радиус R сопрягающей дуги.

а) определить положение центра 02 сопрягающей дуги;

б) найти точки сопряжения s и s1

в) провести дугу сопряжения.

По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры 0 и 01, из которых описы­вают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра 01 — радиусом, равным разности радиусов R и R2. Вспомогательные дуги пересекутся в точке 02, которая будет искомым центром сопряга­ющей дуги.

Соединив точки О и 02 прямой, получают точку сопряжения соединив точки О1 и 02, находят точку сопряжения s. Из центра 02 проводят дугу сопряжения от s до s1

При вычерчивании контура детали необходимо разо­браться, где имеются плавные переходы, и предста­вить себе, где надо выполнить те или иные виды сопря­жения.

Для приобретения навыков построения сопряжения выполняют упражнения по вычерчиванию контуров сложных деталей. Перед упражнением необходимо просмотреть задание, наметить порядок построения сопряжений и только после этого приступить к выпол­нению построений.

На рис. 66, а изображена деталь (кронштейн), а на рис. 66, б, в, г показана последовательность выполне­ния контурного очертания этой детали с построением различных видов сопряжений.

📺 Видео

СопряжениеСкачать

Сопряжение

Деление окружности на равные части. Урок 6. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Деление окружности на равные части. Урок 6. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

НАЧЕРТИТЬ ЗАСОВ. ГЕОМЕТРИЧЕСКОЕ ЧЕРЧЕНИЕ. ИНЖЕНЕРНАЯ ГРАФИКА. ПЕРЕХОДЫ И СОПРЯЖЕНИЯСкачать

НАЧЕРТИТЬ ЗАСОВ. ГЕОМЕТРИЧЕСКОЕ ЧЕРЧЕНИЕ. ИНЖЕНЕРНАЯ ГРАФИКА. ПЕРЕХОДЫ И СОПРЯЖЕНИЯ

Внешнее сопряжение окружностей. Черчение. Тема 9. Задача 6.Скачать

Внешнее сопряжение окружностей. Черчение. Тема 9. Задача 6.

Сопряжение прямого углаСкачать

Сопряжение прямого угла

Чертеж детали с сопряжениемСкачать

Чертеж детали с сопряжением

Сопряжение окружностей #черчение #сопряжениеСкачать

Сопряжение окружностей #черчение #сопряжение

Черчение. Сопряжение на чертеже.Скачать

Черчение. Сопряжение на чертеже.

Инженерная графика. 2 урок. Построение сопряженийСкачать

Инженерная графика. 2 урок. Построение сопряжений

СОПРЯЖЕНИЕ ОКРУЖНОСТИ С ЛИНИЕЙ [pairing the circle with the line]Скачать

СОПРЯЖЕНИЕ ОКРУЖНОСТИ С ЛИНИЕЙ [pairing the circle with the line]
Поделиться или сохранить к себе: