Соответственные углы — вид углов, образованный при пересечении двух прямых секущей.
Один из пары соответственных углов лежит во внутренней области между прямыми, другой — во внешней, причем оба угла находятся по одну сторону от секущей.
При пересечении двух прямых секущей образуется четыре пары соответственных углов.
∠1 и ∠5
∠2 и ∠6
∠3 и∠7
∠4 и ∠8
— соответственные углы при прямых a и b и секущей c.
Наибольший интерес в геометрии представляют соответственные углы при параллельных прямых.
Свойство параллельных прямых
Если две параллельные прямые пересечены третьей прямой, то соответственные углы равны.
∠1 = ∠2
(как соответственные углы при при a ∥ b и секущей c).
Всего при параллельных прямых и секущей образуется четыре пары равных соответственных углов:
∠1 = ∠5
∠2 = ∠6
∠3 = ∠7
∠4 =∠8
Признак параллельных прямых
Если соответственные углы равны, то прямые параллельны.
∠1 = ∠2
А так как эти углы — соответственные при прямых при a и b и секущей c,
то a ∥ b (по признаку параллельных прямых).
Равенство соответственных углов используется, в частности, для доказательства равенства треугольников и подобия треугольников.
- Соответственные углы — определение, основные свойства и признаки
- Базисные понятия
- Углы, образующиеся при пересечении прямых
- Соответственные углы при параллельных прямых
- Доказательство подобия треугольников
- Треугольники. Признаки равенства треугольников
- Первый признак равенства треугольников
- Второй признак равенства треугольников
- Третий признак равенства треугольников
- Задачи и решения
- 🔥 Видео
Видео:Признаки равенства треугольников. 7 класс.Скачать
Соответственные углы — определение, основные свойства и признаки
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Базисные понятия
Угол — простая фигура в геометрии, образуемая двумя лучами, следующими из некоторой точки. Эту точку определяют как его вершину. Название «угол» может относиться к части плоскости, объединяющей все лучи, исходящие из вершины фигуры. Такое обозначение может также иметь угловая мера, чаще всего определяемая в градусах.
В геометрии существует несколько критериев, позволяющих выделить разные типы угловых фигур. Они бывают тупыми и острыми, смежными или вертикальными. Для углов, образуемых в результате пересечения секущей линией двух прямых, в качестве такого критерия берется свойство взаимных соотношений формируемых при этом фигур. При рассмотрении произвольного геометрического рисунка, образованного двумя прямыми линиями и секущей, можно увидеть 4 пары соответственных, по 2 пары внутренних и внешних накрест лежащих или односторонних угловых фигур. Все эти элементы могут быть как тупоугольными, так и остроугольными.
Видео:7 класс, 15 урок, Первый признак равенства треугольниковСкачать
Углы, образующиеся при пересечении прямых
Чтобы понять, как выглядят соответственные углы, а также уметь находить их на любых геометрических рисунках, нужно хорошо усвоить разницу между типами фигур, образованных секущей линией. Кроме того, следует обратить внимание на наличие внутренней и внешней областей. Первая зона ограничивается площадью между двумя прямыми, второй внешней областью считается неограниченное пространство снаружи от этих двух линий.
Итак, образованным тремя прямыми линиями угловым фигурам можно дать следующие определения:
- Накрест лежащие внутренние углы — это разносторонние по отношению к секущей объекты внутри области, сформированной прямыми. Если обе фигуры лежат за пределами двух прямых по противоположные стороны от секущей, то такие угловые элементы называются внешними накрест лежащими.
- В отличие от предыдущих противолежащих фигур, односторонние углы расположены на одной стороне: внутри области, образованной двумя прямыми (внутренние), или во внешних областях (наружные).
- Соответственные по определению являются парными фигурами, образующимися по одну сторону от линии, пересекающей две других, с аналогичных сторон обеих прямых. Один из углов пары расположен между прямыми и является внутренним, а другой лежит вне этой зоны, поэтому считается внешним.
Более наглядное представление об этом типе углов можно получить, если секущую изобразить в виде направленного вектора. Парные угловые элементы расположены в одном направлении относительно прямых, пересеченных третьей линией.
Чтобы окончательно разобраться в вопросе, нужно усвоить понятие соответствия с математической точки зрения. В геометрии это свойство двух фигур, у которых углы, стороны или точки одного объекта аналогичны соответствующим элементам другого объекта. Аналогия проявляется не в их равенстве, а во взаимном соотношении элементов. О соответствии углов говорит аналогичное пространственное положение лучей в местах пересечения прямых с третьей секущей линией. Таким образом, речь идет об элементах, имеющих одинаковое относительное положение.
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Соответственные углы при параллельных прямых
Свойства фигур, формирующихся при пересечении секущей параллельных прямых, давно описаны в планиметрии. Известно, что соответственные накрест лежащие угловые элементы при параллельных прямых равны. Сложение угловых величин односторонних фигур дает значение 180 градусов. В геометрии применяется формула для расчета суммы соответственных парных угловых фигур при условии параллельности двух линий. Для определения этого параметра из числа 360 надо вычесть удвоенную угловую величину одностороннего угла, прилежащего к любому из пары рассчитываемых соответственных угловых элементов.
Равные соответственные углы указывают на параллельность прямых. Справедливость этого признака вытекает из следующих утверждений:
- Отметим отрезок на секущей, начало и конец которого, точки C и D, находятся в местах пересечения секущей с прямыми a и b.
- Через среднюю точку K отрезка опустим перпендикуляр к прямой a. Точки его пересечения с прямыми обозначим как A и B. Сформированные отрезками треугольники CKA и DKB являются прямоугольными, а отрезки AK и BK — сторонами, прилежащими к прямоугольным вершинам. Каждый из этих катетов одновременно является высотой треугольника, проведенной из остроугольной вершины.
- Для доказательства следует учитывать равенство вертикальных ∠CKA и ∠DKB, ∠BDK и ∠АСК равны по условию равенства соответственных углов с учетом того, что вертикальные углы с вершинами в точках C и D равны, CK и KD — два равных отрезка по условию.
- Таким образом, в треугольниках CKA и DKB сторона и прилежащие к ней углы имеют равные величины, что соответствует одному из признаков равенства треугольников.
- Поскольку AB перпендикулярен прямой a и отрезку AC, то CKA — прямоугольный треугольник, и это дает основание считать, что равный ему треугольник DKB также прямоугольный, из чего следует перпендикулярность отрезка AB по отношению к прямой b.
- Было доказано, что две прямые перпендикулярны к третьей прямой, и это подтверждает их параллельность.
Доказательство можно развернуть и в обратном направлении. Параллельные линии при пересечении третьей прямой формируют одинаковые по величине соответственные углы. Это утверждение известно как свойство параллельных линий.
Такого рода свойства встречаются в описаниях признаков и теорем. Их равенство — часть доказательств равенства и подобия треугольников. В свою очередь, используя признаки подобных и равных треугольников, можно обосновывать доказательства сложных теорем, находить решения сложных задач, править возможные ошибки.
Видео:Первый признак равенства треугольников. 7 класс.Скачать
Доказательство подобия треугольников
Существует три признака, по которым могут быть определены подобные треугольники. Во-первых, подобие подтверждается пропорциональностью всех трех сторон треугольников. Во-вторых, подобными считаются треугольники, имеющие две пропорциональные стороны, угловая величина между которыми равна соответствующему элементу второго треугольника. В-третьих, подобие подтверждается, когда имеет место равенство двух углов обоих треугольников.
Рассмотрим доказательство этого признака, в ходе которого применяется свойство тождественности соответственных угловых объектов:
- Возьмем два треугольника ABC и A1B1C1, в которых равны два угла. Из этого следует, что величина третьего угла также одинакова в обеих фигурах. Требуется доказать подобие треугольников.
- Отметим точку A2 на AB таким образом, чтобы величина BA2 совпала с A1B1. Через A2 параллельно основанию AC проведем прямую, проходящую через BC в точке B2.
- Треугольники A2BC2 и A1B1C1 равны, что подтверждается одинаковыми величинами сторон A1B1, BA2 и углов B, B1 (по построению или условию), а также равенством углов A, A1 как соответственных при параллельных линиях.
- Поскольку, согласно лемме, параллельная стороне треугольника прямая отсекает от него подобный треугольник, то A2BC2 подобен ABC. Из этого следует подобие треугольников ABC и A1B1C1.
Подобного рода рассуждения и доказательства, учитывающие свойства соответственных угловых фигур, учитываются при решении разного рода задач.
В сложных планиметрических фигурах в качестве секущей, формирующей этот тип геометрических объектов, может выступать медиана, биссектриса треугольника или какие-либо другие линии. Для решения таких задач требуется хорошее знание базовых понятий, признаков, свойств, аксиом, позволяющее заметить определенные соотношения и закономерности в том или ином задании.
Видео:ТРИ ПРИЗНАКА РАВЕНСТВА ТРЕУГОЛЬНИКОВ НА ЕГЭ #shorts #математика #егэ #огэ #профильныйегэ #геометрияСкачать
Треугольники. Признаки равенства треугольников
Треугольник − это геометрическая фигура, образованная соединением отрезками трех, не лежащих на одной прямой точек .
Эти точки называются вершинами треугольника. Отрезки, соединяющие эти точки называются сторонами треугольника.
Треугольник обозначается знаком ⊿. Например треугольник ABC обозначается так: ⊿ABC. Этот же треугольник можно обозначать так: ⊿BAC, ⊿CBA и т.д.
Углы треугольника обозначают так ∠BAC, ∠ABC, ∠BCA. Эти же углы коротко обозначают также ∠A, ∠B, ∠C, соответственно. Углы треугольника принято также обозначать греческими буквами α, β, γ и т.д. Стороны тркеугольника обозначают так AB, BC, AC. Принято также стороны обозначать одной строчной буквой, причем сторона напротив угла A ,обозначается буквой a, сторона напротив угла B− b, сторона напротив угла C− c. Сумма трех сторон треугольника называется периметром треугольника.
Как известно, две треугольники называются равными, если при наложении друг на друга их можно совместить. На Рис.2 представлены два треугольника ABC и A1B1C1. Треугольник ABC можно наложить на треугольник A1B1C1 так, чтобы вершины и стороны этих треугольников попарно совместились. Очевидно, что при этом совместятся и соответствующие углы.
Вышеизложенное можно сформулировать так:
Если два треугольника равны, то элементы (стороны и углы) одного треугольника соответственно равны элементам другого треугольника. Равенство треугольников ABC и A1B1C1 обозначается так:
Видео:Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать
Первый признак равенства треугольников
Теорема 1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1C1 (Рис.3). Пусть AB=A1B1, AС=A1С1 и ∠A=∠A1. Докажем, что .
Видео:Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.Скачать
Второй признак равенства треугольников
Теорема 2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1С1 (Рис.4). Пусть AB=A1B1, ∠A=∠A1, ∠B=∠B1. Докажем, что .
Видео:Урок 02. Треугольник, Равенство треугольников, Соответственные, накрест лежащие, односторонние углыСкачать
Третий признак равенства треугольников
Теорема 3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1С1. Пусть AB=A1B1, AC=A1C1 и BC=B1C1. Докажем, что . Приложим треугольник ABC к треугольнику A1B1С1 так, чтобы вершина A совмещалась с вершиной A1, вершина B совмещалась с вершиной B1, а вершины С и С1 находились по разные стороны от прямой A1B1.
Возможны три варианта: луч CC1 проходит внутри угла ACB(Рис.6); луч CC1 совпадает с одной из сторон угла ACB (Рис.7); луч CC1 проходит вне угла ACB(Рис.8). Рассмотрим эти три случая по отдельности.
. |
Имеем AC=A1C1, BC=B1C1 ∠ACB=∠A1C1B1 и по первому признаку равенства треугольников . Теорема доказана.
Вариант 2 (Рис.7). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольник BСС1 равнобедренный. Тогда ∠1=∠2. Имеем: AC=A1C1, BC=B1C1, ∠1=∠2 и по первому признаку равенства треугольников . Теорема доказана.
Вариант 3 (Рис.8). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольники AСС1 и BСС1 равнобедренные. Тогда ∠1=∠2 и и, следовательно:
. |
Имеем AC=A1C1, BC=B1C1 и по первому признаку равенства треугольников . Теорема доказана.
Видео:Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать
Задачи и решения
Задача 1. На сторонах угла CAD отмечены точки B и E так, что точка B лежит на отрезке AC, а точка E − на отрезке AD, причем AC=AD и AB=AE. Докажите, что ∠CBD=∠DEC (Рис.9).
Доказательство. AC=AD, AE=AB, ∠CAD общий для треугольников CAE и DAB. Тогда, по первому признаку равенства треугольников (теорема 1) ⊿ACE=⊿ADB. Следовательно ∠DBA=∠AEC. Поскольку углы CBD и DBA смежные, то CBD=180°−∠DBA. Аналогично CED=180°-∠AEC. То есть ∠CBD=∠DEC. Конец доказательства .
Задача 2. По данным рисунка рис.10 докажите, что OP=OT, ∠P=∠T
Доказательство. OC=OB, ∠TCO=∠PBO=90°. Углы TOC и POB вертикальные (следовательно равны) тогда, повторому признаку равенства треугольников (теорема 2), ⊿TCO=⊿PBO. Конец доказательства .
🔥 Видео
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)Скачать
Параллельные прямые | Математика | TutorOnlineСкачать
Признаки равенства треугольников. Практическая часть. 7 класс.Скачать
Второй признак равенства треугольников. 7 класс.Скачать
7 класс, 19 урок, Второй признак равенства треугольниковСкачать
Геометрия 7 класс (Урок№9 - Треугольник.)Скачать
Геометрия. 7 класс. Теоремы. Т7. Второй признак равенства треугольников.Скачать
Признаки равенства треугольников ✔️ #умскул_профильнаяматематика #никитасалливан #егэпрофильСкачать
Высота, биссектриса, медиана. 7 класс.Скачать