Соотношение линейных скоростей двух точек движущихся по окружности

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Соотношение линейных скоростей двух точек движущихся по окружности

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Соотношение линейных скоростей двух точек движущихся по окружности

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Соотношение линейных скоростей двух точек движущихся по окружности

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Соотношение линейных скоростей двух точек движущихся по окружности

Количество оборотов выражается следующей формулой:

Соотношение линейных скоростей двух точек движущихся по окружности

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Соотношение линейных скоростей двух точек движущихся по окружности

Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Соотношение линейных скоростей двух точек движущихся по окружности

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Соотношение линейных скоростей двух точек движущихся по окружности

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Соотношение линейных скоростей двух точек движущихся по окружности

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Соотношение линейных скоростей двух точек движущихся по окружности

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Соотношение линейных скоростей двух точек движущихся по окружности

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Соотношение линейных скоростей двух точек движущихся по окружности

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Соотношение линейных скоростей двух точек движущихся по окружности

Выражая угловую скорость через частоту, получим:

Соотношение линейных скоростей двух точек движущихся по окружности

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Соотношение линейных скоростей двух точек движущихся по окружности

Сравним две формулы:

Соотношение линейных скоростей двух точек движущихся по окружности

Преобразуем формулу линейной скорости и получим:

Соотношение линейных скоростей двух точек движущихся по окружности

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Соотношение линейных скоростей двух точек движущихся по окружности

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Соотношение линейных скоростей двух точек движущихся по окружности

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Видео:Урок 88 (осн). Линейная скорость точки на вращающемся телеСкачать

Урок 88 (осн). Линейная скорость точки на вращающемся теле

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Соотношение линейных скоростей двух точек движущихся по окружности

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Соотношение линейных скоростей двух точек движущихся по окружности

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Соотношение линейных скоростей двух точек движущихся по окружности

Подставляем известные данные в формулу и вычисляем:

Соотношение линейных скоростей двух точек движущихся по окружности

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Соотношение линейных скоростей двух точек движущихся по окружности

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Соотношение линейных скоростей двух точек движущихся по окружности

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Соотношение линейных скоростей двух точек движущихся по окружности

Произведем сокращения и получим:

Соотношение линейных скоростей двух точек движущихся по окружности

Соотношение линейных скоростей двух точек движущихся по окружности

Соотношение линейных скоростей двух точек движущихся по окружности

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Кинематика Урок №8. Движение по окружности. Физика ЕГЭ 2022Скачать

Кинематика Урок №8. Движение по окружности. Физика ЕГЭ 2022

I. Механика

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Видео:Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)Скачать

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Соотношение линейных скоростей двух точек движущихся по окружностиСоотношение линейных скоростей двух точек движущихся по окружности Соотношение линейных скоростей двух точек движущихся по окружности

Видео:Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)Скачать

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Соотношение линейных скоростей двух точек движущихся по окружности Соотношение линейных скоростей двух точек движущихся по окружности

Частота и период взаимосвязаны соотношением

Соотношение линейных скоростей двух точек движущихся по окружности Соотношение линейных скоростей двух точек движущихся по окружности

Связь с угловой скоростью

Соотношение линейных скоростей двух точек движущихся по окружности Соотношение линейных скоростей двух точек движущихся по окружности

Видео:Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Соотношение линейных скоростей двух точек движущихся по окружности

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Соотношение линейных скоростей двух точек движущихся по окружности Соотношение линейных скоростей двух точек движущихся по окружности

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Соотношение линейных скоростей двух точек движущихся по окружностиСоотношение линейных скоростей двух точек движущихся по окружности Соотношение линейных скоростей двух точек движущихся по окружности

Используя предыдущие формулы, можно вывести следующие соотношения

Соотношение линейных скоростей двух точек движущихся по окружности

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Видео:Равномерное движение точки по окружности | Физика 10 класс #7 | ИнфоурокСкачать

Равномерное движение точки по окружности | Физика 10 класс #7 | Инфоурок

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Видео:Формулы механики 2, движение по окружности, центростремительное ускорениеСкачать

Формулы механики 2, движение по окружности, центростремительное ускорение

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Соотношение линейных скоростей двух точек движущихся по окружности

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Видео:угловая и линейная скоростьСкачать

угловая и линейная скорость

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Соотношение линейных скоростей двух точек движущихся по окружности

Разница векторов есть Соотношение линейных скоростей двух точек движущихся по окружности. Так как Соотношение линейных скоростей двух точек движущихся по окружности, получим

Соотношение линейных скоростей двух точек движущихся по окружности

Видео:Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Движение по циклоиде*

Соотношение линейных скоростей двух точек движущихся по окружности

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью Соотношение линейных скоростей двух точек движущихся по окружности, которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле Соотношение линейных скоростей двух точек движущихся по окружности

Видео:Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

Связь между угловой и линейной скоростями

Отсюда легко установить связь между линейной и угловой скоростями. Мы уже знаем, что угловая скорость связана с числом оборотов формулой: ω = 2πn; поэтому на основании формулы скорости движения по окружности получим:

Линейная скорость точки, движущейся равномерно по окружности, равна угловой скорости, умноженной на радиус окружности.

Известно, что вектор скорости точки, движущейся по окружности, направлен по касательной. Следовательно, линейная скорость направлена по касательной к окружности.

Из формулы видно, что линейная скорость измеряется в см /сек , м /сек и т.д.

14. Что называется линейным ускорением материальной точки, в каких единицах оно измеряется?

линейное ускорение — это производная от скорости по времени.

Формула линейного ускорения:

а = dv / dt = d 2 s/dt 2 , где s – путь ,пройденный телом.

15. Закон равноускоренного движения по прямой

равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению.

Закон равноускоренного движения по прямой Соотношение линейных скоростей двух точек движущихся по окружности

Это выражение называют законом равноускоренного движения

Начальная скорость-υ0 , конечная скорость-υ, ускорения-a, время-t. Соотношение линейных скоростей двух точек движущихся по окружности

16. Что называется угловой скоростью, в каких единицах оно измеряется?

Угловая скорость — величина, характеризующая скорость вращения материальной точки вокруг центра вращения.

Соотношение линейных скоростей двух точек движущихся по окружности

17. Что называется частотой вращения, в каких единицах оно измеряется?

Частота вращения — это физическая величина, равная числу полных оборотов за единицу времени

Соотношение линейных скоростей двух точек движущихся по окружности

18. Что называется периодом вращения, в каких единицах он измеряется?

Период вращения (физический термин) — промежуток времени, в течение которого точка совершает полный оборот, двигаясь по окружности.

Соотношение линейных скоростей двух точек движущихся по окружности

19. Связь между угловой скоростью вращения и его частотой.

Угловая скорость вращения ω это отношение угла, на которое тело повернется, к времени, за которое оно это сделает. Полному обороту вокруг оси соответствует угол 2π или 360° в зависимости от единиц измерения угла. Число оборотов равно отношению пройденного угла к 2π или 360°. Частота вращения это число полных оборотов тела вокруг оси за единицу времени, таким образом она равна ω/(2π) или ω/360° для углов, измеряемых в градусах

20. Связь между угловой скоростью и периодом. Соотношение линейных скоростей двух точек движущихся по окружности

21. Связь между линейной и угловой скоростями

Связь между линейной и угловой скоростью. Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть ее отличие от угловой скорости. При вращении твердого тела разные его точки имеют разные линейные скорости, но угловая скорость для всех точек одинакова. Междулинейной скоростью какой-либо точки вращающегося тела и угловой скоростьсуществует связь. Точка, лежащая на окружности радиуса R, за один оборот пройдет путь 2πR. А так как, время одного оборота тела есть период Т, то модуль линейнойскорости можно найти так: v=2πR/T=2πRν или v=ωR

Соотношение линейных скоростей двух точек движущихся по окружности

22. Центростремительное ускорение

» Соотношение линейных скоростей двух точек движущихся по окружности

23. Что называется нормальным ускорением материальной точки, как его вычислить?

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения .Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Соотношение линейных скоростей двух точек движущихся по окружностиn. Вектор нормального ускорения направлен по радиусу кривизны траектории.

24. Что называется тангенциальным ускорением материальной точки, как его вычислить?

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Соотношение линейных скоростей двух точек движущихся по окружности

25. Напишите формулу для определения полного ускорения материальной точки Соотношение линейных скоростей двух точек движущихся по окружности

26. Какое падение тела называется свободным?

Свободным падением называется движение, которое совершило бы тело только под действием силы тяжести без учета сопротивления воздуха.

📸 Видео

Соотношение угловой скорости и линейной скоростиСкачать

Соотношение угловой скорости и линейной скорости

Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Ускорение при равномерном движении по окружностиСкачать

Ускорение при равномерном движении по окружности

ДВИЖЕНИЕ ПО ОКРУЖНОСТИ 9 класс физика ПерышкинСкачать

ДВИЖЕНИЕ ПО ОКРУЖНОСТИ 9 класс физика Перышкин

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)Скачать

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)
Поделиться или сохранить к себе: