Синус угла остроугольного треугольника

Теорема синусов

Синус угла остроугольного треугольника

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Синус угла остроугольного треугольника

Формула теоремы синусов:

Синус угла остроугольного треугольника

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Синус угла остроугольного треугольника

Из этой формулы мы получаем два соотношения:


    Синус угла остроугольного треугольника

Синус угла остроугольного треугольника
На b сокращаем, синусы переносим в знаменатели:
Синус угла остроугольного треугольника

  • Синус угла остроугольного треугольника
    bc sinα = ca sinβ
    Синус угла остроугольного треугольника
  • Из этих двух соотношений получаем:

    Синус угла остроугольного треугольника

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

    8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Синус угла остроугольного треугольника

    Синус угла остроугольного треугольника

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Синус угла остроугольного треугольника

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Синус угла остроугольного треугольника

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Синус угла остроугольного треугольника

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Синус угла остроугольного треугольника

    Вспомним свойство вписанного в окружность четырёхугольника:

    Синус угла остроугольного треугольника

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Синус угла остроугольного треугольника

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Синус угла остроугольного треугольника

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Синус угла остроугольного треугольника

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Синус угла остроугольного треугольника

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Синус угла остроугольного треугольника

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Синус угла остроугольного треугольника

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Синус угла остроугольного треугольника

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Синус угла остроугольного треугольника

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Синус угла остроугольного треугольника

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги АлександровныСкачать

    Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги Александровны

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Синус угла остроугольного треугольника
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Синус угла остроугольного треугольника

    Синус угла остроугольного треугольника

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

    ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Синус угла остроугольного треугольника

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

    Синус, косинус и тангенс острого угла прямоугольного треугольника

    Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

    Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

    Острый угол — меньший 90 градусов.

    Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂

    Синус угла остроугольного треугольника

    Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

    Угол обозначается соответствующей греческой буквой .

    Синус угла остроугольного треугольника

    Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

    Катеты — стороны, лежащие напротив острых углов.

    Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.

    Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

    Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

    Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

    Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

    Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

    Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

    Синус угла остроугольного треугольника

    Давайте докажем некоторые из них.

    1. Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
    2. С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла катет а будет прилежащим.Получаем, что . Иными словами, .
    3. Возьмем теорему Пифагора: . Поделим обе части на : Мы получили основное тригонометрическое тождество.
    4. Поделив обе части основного тригонометрического тождества на , получим: Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус. Аналогично,

    Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

    Мы знаем, что сумма углов любого треугольника равна .

    Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

    Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

    Синус угла остроугольного треугольника

    С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

    Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

    Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

    0
    0
    0
    0
    0

    Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

    Ты нашел то, что искал? Поделись с друзьями!

    Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

    1. В треугольнике угол равен , . Найдите .

    Задача решается за четыре секунды.

    2 . В треугольнике угол равен , , . Найдите .

    Синус угла остроугольного треугольника

    Найдем по теореме Пифагора.

    Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

    Синус угла остроугольного треугольника

    Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы.

    Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

    Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

    Видео:Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!Скачать

    Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!

    Синус угла в обычном треугольнике

    Синус угла остроугольного треугольника

    Синус угла остроугольного треугольника

    Синус (sin) – это одна из прямых тригонометрических функций. Подробнее о ней можно узнать из нашей статьи Что такое синус.

    Видео:Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать

    Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

    Синус угла в прямоугольном треугольнике

    Прежде чем выяснять, как найти синус угла, необходимо определиться с условными обозначениями. Пусть в прямоугольном треугольнике:

    • α – острый угол, синус которого нужно найти;
    • с – гипотенуза;
    • b – прилежащий катет;
    • a – противолежащий катет.

    Тогда чтобы найти синус острого угла прямоугольного треугольника, достаточно посчитать соотношение длины противолежащего катета к длине гипотенузы: sin(α) = a/c. При этом стоит запомнить, что sin 90° всегда равен 1.

    Видео:Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)Скачать

    Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)

    Синус угла в произвольном треугольнике

    Находить синус угла в произвольном треугольнике проще всего с использованием теоремы косинусов (cos): квадрат длины любой стороны равен сумме квадратов длин двух других сторон за минусом их удвоенного произведения на косинус угла между ними.

    a² = b² + c² – 2*b*c*cos(α)

    Из данной формулы можно найти косинус: cos(α) = (b² + c² – a²)/(2*b*c)

    А поскольку для одного и того же угла sin(α)² + cos(α)² = 1 и это константа, то можно вывести формулу для определения синуса:

    Более детально нахождение синуса угла с использованием косинуса рассмотрено в нашей статье Как найти синус, если известен косинус.

    Что такое синус в треугольнике? Как найти синус острого угла в прямоугольном треугольнике?

    Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

    для угла A треугольника ABC

    противолежащий катет — это BC.

    Соответственно, синус угла A в треугольнике ABC — это

    Синус угла остроугольного треугольника

    Синус угла остроугольного треугольникаДля угла B треугольника ABC

    противолежащим является катет AC.

    Соответственно, синус угла B в треугольнике ABC

    равен отношению AC к AB:

    Синус угла остроугольного треугольника

    Таким образом, синус острого угла в прямоугольном треугольнике — это некоторое число, получаемое в результате деления длины противолежащего катета на длину гипотенузы. Длины отрезков выражаются положительными числами, поэтому синус угла треугольника также является положительным числом.

    Поскольку длина катета всегда меньше длины гипотенузы, то синус острого угла прямоугольного треугольника — число, меньшее единицы.

    Синус любого острого угла прямоугольного треугольника больше нуля, но меньше единицы:

    Синус угла остроугольного треугольника

    Синус угла треугольника зависит не от длин сторон треугольника, а от отношения этих длин.

    1) В треугольнике ABC катет BC=3 см, а гипотенуза AB=5 см.

    Синус угла остроугольного треугольника

    2) В треугольнике ABC катет BC=21 дм, гипотенуза AB=35 дм.

    Синус угла остроугольного треугольника

    Длины сторон треугольника изменилось, но отношения длин остались прежними, поэтому и значение синуса угла A не изменилось.

    2
    Для нахождения синусов углов в произвольном треугольнике, как это ни странно, проще использовать не теорему синусов, а теорему косинусов. Она гласит, что возведенная в квадрат длина любой стороны равна сумме квадратов длин двух других сторон без удвоенного произведения этих длин на косинус угла между ними: А²=В²+С2-2*В*С*cos(α). Из этой теоремы можно вывести формулу для нахождения косинуса: cos(α)=(В²+С²-А²)/(2*В*С) . А поскольку сумма квадратов синуса и косинуса одного и того же угла всегда равна единице, то можно вывести и формулу для нахождения синуса угла α: sin(α)=√(1-(cos(α))²)= √(1-(В²+С²-А²)²/(2*В*С) ²).

    🔍 Видео

    68. Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

    68. Синус, косинус и тангенс острого угла прямоугольного треугольника

    Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.Скачать

    Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.

    Синус, косинус произвольного угла. 9 класс.Скачать

    Синус, косинус произвольного угла. 9 класс.

    Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

    Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

    КОСИНУС НА ПАЛЬЦАХ 🖐 #shorts #егэ #огэ #математика #профильныйегэСкачать

    КОСИНУС НА ПАЛЬЦАХ 🖐 #shorts #егэ #огэ #математика #профильныйегэ

    Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

    Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

    Нахождение стороны прямоугольного треугольникаСкачать

    Нахождение стороны прямоугольного треугольника

    Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений ДолжкевичСкачать

    Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений Должкевич

    Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1Скачать

    Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1

    Синус, косинус, тангенс острого угла прямоугольного треугольникаСкачать

    Синус, косинус, тангенс острого угла прямоугольного треугольника

    Нахождение косинуса и синуса угла в прямоугольном треугольникеСкачать

    Нахождение косинуса и синуса угла в прямоугольном треугольнике
    Поделиться или сохранить к себе: