Рассмотрим некоторые задачи на вписанные углы.
1) По данным рисунка 1 найти угол AOB,
Дуги ACB и AKB дополняют друг друга до окружности. Следовательно, сумма их градусных мер равна 360º.
∠ACB — вписанный угол, опирающийся на дугу AKB.
Значит, градусная мера дуги равна
AOB — центральный угол, опирающийся на дугу ACB, поэтому его градусная мера равна градусной меры этой дуги, то есть, ∠AOB=110º.
2) Точки C и D окружности лежат по одну сторону от диаметра AB.
Найти угол ABD, если ∠BCD=34º.
Соединим точки A и D.
Рассмотрим треугольник ABD.
Так как сумма острых углов прямоугольного треугольника равна 90º, то ∠ABD=90º-∠BAD=90º-34º=56º.
2) В окружности с центром O проведены диаметры AF и BC. Точки C и K окружности лежат по одну сторону от диаметра AF.
Найти угол BCK, если ∠ABC=62º, ∠AFK=20º.
1) Проведем отрезки KC и AC.
2) Рассмотрим треугольник ABC.
∠BAC=90º (как вписанный угол, опирающийся на диаметр).
Поскольку сумма острых углом прямоугольного треугольника равна 90º, ∠ACB=90º-∠ABC=90º-62º=28º.
3) ∠ACK=∠AEK=20º (как вписанные углы, опирающиеся на одну дугу).
Как правило, решение задач на вписанные в окружность углы можно выполнить несколькими способами. Мы рассмотрели только один вариант в каждом случае, но могут быть и другие.
Решение задач на вписанные в окружность треугольники и четырехугольники во многих случаях также сводится к рассмотрению вписанных и центральных углов (или дуг).
Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать
Решение задач с вписанными окружностями найти углы треугольника
Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.
Вписанный угол равен половине центрального угла, опирающегося на ту же хорду.
Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.
Рассмотрим треугольник AOB. Он равносторонний, так как AO = OB = AB = R. Поэтому угол AOB = 60. Вписанный угол ACB равен половине дуги, на которую он опирается. Тем самым, он равен 30°.
Чему равен тупой вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.
Вписанный угол дополняет половину центрального угла, опирающегося на ту же хорду, до 180°. Треугольник AOB является равносторонним, т. к. AO = OB = AB = R, поэтому угол AOB = 60°. Тогда
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Углы, связанные с окружностью
Вписанные и центральные углы |
Углы, образованные хордами, касательными и секущими |
Доказательства теорем об углах, связанных с окружностью |
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Вписанные и центральные углы
Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).
Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).
Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.
Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.
Видео:Найти угол треугольника, вписанного во вписанную окружностьСкачать
Теоремы о вписанных и центральных углах
Фигура | Рисунок | Теорема | |||||||||||||||||||||||||||||||||||
Вписанный угол | |||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же дугу равны. | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр | ||||||||||||||||||||||||||||||||||||
Окружность, описанная около прямоугольного треугольника |
Вписанный угол | |||||||||||||||||||||||||||||||||
Окружность, описанная около прямоугольного треугольника | |||||||||||||||||||||||||||||||||
Фигура | Рисунок | Теорема | Формула |
Угол, образованный пересекающимися хордами | |||
Угол, образованный секущими, которые пересекаются вне круга | |||
Угол, образованный касательной и хордой, проходящей через точку касания | |||
Угол, образованный касательной и секущей | |||
Угол, образованный двумя касательными к окружности |
Угол, образованный пересекающимися хордами хордами |
Формула: |
Угол, образованный секущими секущими , которые пересекаются вне круга |
Формула: |
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный касательной и хордой хордой , проходящей через точку касания |
Формула: |
Угол, образованный касательной и секущей касательной и секущей |
Формула: |
Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный двумя касательными касательными к окружности |
Формулы: |
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами Видео:Решение задач на тему центральные и вписанные углы.Скачать Доказательства теорем об углах, связанных с окружностьюТеорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5). Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана. Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6). В этом случае справедливы равенства и теорема 1 в этом случае доказана. Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7). В этом случае справедливы равенства что и завершает доказательство теоремы 1. Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 8. Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 9. Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами. Доказательство . Рассмотрим рисунок 10. Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства что и требовалось доказать Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 11. Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства что и требовалось доказать. Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 12. Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство 📽️ ВидеоВписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать Вписанная и описанная окружности | Лайфхак для запоминанияСкачать Найдите угол: как придумали такую задачу?Скачать Вписанные и описанные окружности. Вебинар | МатематикаСкачать Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать Вписанные углы | Задачи 11-20 | Решение задач | Волчкевич | Уроки геометрии 7-8 классыСкачать Сможешь найти угол треугольника? Интересная задача, где "ничего не дано"Скачать Вписанная и описанная окружность - от bezbotvyСкачать Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Геометрия 8 класс : Решение задач на центральные и вписанные углыСкачать Геометрия 8 класс : Решение задач. Вписанная окружностьСкачать Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать |