В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
- Определение равностороннего треугольника
- Свойства равностороннего треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
- Пример задачи
- Геометрия. 7 класс
- Что такое равносторонний треугольник
- Определение равностороннего треугольника
- Свойства равностороннего треугольника
- Примеры решения задач
- 📸 Видео
Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Видео:Равнобедренный треугольник. 7 класс.Скачать
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Видео:Геометрия Равносторонний треугольникСкачать
Геометрия. 7 класс
Конспект урока
Перечень рассматриваемых вопросов:
- Геометрическая фигура – треугольник, его элементы.
- Классификация треугольников по сторонам и углам.
- Периметр треугольника.
- Теорема о внешнем угле треугольника.
Треугольник – геометрическая фигура, образованная тремя точками, не лежащими на одной прямой, которые соединены между собой отрезками.
Периметр треугольника – это сумма длин всех его сторон.
Стороны треугольника– отрезки, соединяющие вершины треугольника.
Равные треугольники –треугольники, которые можно совместить наложением.
1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б.Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т.М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т.М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М.А. Геометрия: Самостоятельные и контрольные работы 7–9классы.// Иченская М.А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Вы уже познакомились с основными геометрическими фигурами:
Рассмотрим геометрическую фигуру, которая также является одной из основополагающих– треугольник.
Треугольник – геометрическая фигура, образованная тремя точками, не лежащими на одной прямой, которые соединены между собой отрезками.
Точки, с которых начиналось построение, называются вершинами треугольника.
Отрезки, соединяющие вершины треугольника, называются сторонами треугольника.
А, В, С – вершины треугольника АВС.
АВ, ВС, СА – стороны треугольника АВС.
∠А,∠В,∠С – углы треугольника АВС.
Периметр треугольника – это сумма длин всех его сторон.
Рассмотрим виды треугольников.
Их можно разделить по виду и соотношению углов, а также по соотношению сторон.
По углам треугольник может быть:
– остроугольным, если все его углы являются острыми, (т.е. меньше 90°).
– тупоугольным, если один из его углов тупой(т.е. больше 90°).
– прямоугольным, если один угол 90° (т.е. прямой).
По сторонам треугольник бывает:
– разносторонний, если все его стороны имеют различную длину;
– равнобедренный, если две его стороны равны между собой;
– равносторонний,если у него все три стороны равны между собой.
Напомним, что две фигуры, в том числе и треугольник, можно сравнить. ∆ АВС = ∆ А1В1С1
Два треугольника называются равными, если их можно совместить наложением. При этом попарно совмещаются вершины, углы и стороны треугольников.
Следует помнить, что если два треугольника равны, то элементы (стороны и углы) одного треугольника соответственно равны элементам (сторонам и углам) другого треугольника.
Свойство равных треугольников.
В равных треугольниках против соответственно равных сторон лежат равные углы. Обратное утверждение тоже верно: против соответственно равных углов лежат равные стороны.
Равенство треугольников также можно установить, не производя наложения фигур друг на друга, а сравнивая лишь некоторые элементы этих фигур. Это станет возможным при изучении признаков равенства треугольников.
Внешний угол треугольника.
Введём определение внешнего угла треугольника.
Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.
У каждого угла треугольника есть два угла, смежных с ним, т.е. у треугольника шесть внешних углов.
Отметим, что при одной вершине внешние углы равны, как вертикальные.
Разбор решения заданий тренировочного модуля.
Найдите градусную меру внешнего ∠В, треугольника АВС, если ∠АВС = 60°.
По рисунку видно, что угол В внешний угол треугольника и он является смежным к углу АВС, следовательно, их сумма равна 180°.
∠В = 180° – ∠АВС = 180° – 60° = 120°
Периметр ∆АВС равен 58 см, сторона АВ = 20 см, сторона ВС >АС на 5 см. Найдите стороны ВС и АС.
Решение: Для решения задачи воспользуемся формулой периметра треугольника Р∆АВС = АВ + ВС + АС. Обозначим сторону АС за х, тогда сторона ВС равна х + 5, составим уравнение.
1. х + х + 5 + 20 = 58,
5. х = 16,5 см – сторона АС.
6. 16,5 + 5 = 21,5 см – сторона ВС.
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Что такое равносторонний треугольник
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Определение равностороннего треугольника
Равносторонним треугольником называется такой треугольник $ABC$, у которого все стороны равны: $AB = BC = AC$.
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Свойства равностороннего треугольника
- В равностороннем треугольнике все углы равны.
Любая биссектриса, равностороннего треугольника равна его медиане и высоте. Если сторона равностороннего треугольника равна $a$, то
Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать
Примеры решения задач
Задание. Определить, чему равны углы в равностороннем треугольнике.
Решение. По свойству равностороннего треугольника, в нем все углы равны. Обозначим эту величину через $x$, то есть $alpha=beta=gamma=x$. Так как сумма всех углов треугольника равна $180^$, справедливо равенство
Ответ. В равностороннем треугольнике все углы по $60^$
📸 Видео
7 фактов про равносторонний треугольникСкачать
МЕРЗЛЯК-7 ГЕОМЕТРИЯ РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК И ЕГО СВОЙСТВА ПАРАГРАФ-9Скачать
Свойства равнобедренного треугольника. 7 класс.Скачать
Геометрия 7 класс (Урок№9 - Треугольник.)Скачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Геометрия 7 класс - равнобедренный треугольник и его свойстваСкачать
Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)Скачать
РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК и его свойства. §9 геометрия 7 классСкачать
Равнобедренный треугольник. Практическая часть. 7 класс.Скачать
Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать
Высота, биссектриса, медиана. 7 класс.Скачать
Формулы равностороннего треугольника #shortsСкачать