Равнобедренный треугольник авс вписан в окружность основание ав

Треугольник вписанный в окружность

Равнобедренный треугольник авс вписан в окружность основание ав

Видео:Треугольник ABC вписан в окружность с центром O Угол BAC равен 32°Скачать

Треугольник ABC вписан в окружность с центром O  Угол BAC равен 32°

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Равнобедренный треугольник авс вписан в окружность основание ав

Видео:№703. В окружность вписан равнобедренный треугольник ABC с основанием ВС. Найдите углы треугольникаСкачать

№703. В окружность вписан равнобедренный треугольник ABC с основанием ВС. Найдите углы треугольника

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:2031 окружность центром в точке О описана около равнобедренного треугольника ABCСкачать

2031 окружность центром в точке О описана около равнобедренного треугольника ABC

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Равнобедренный треугольник авс вписан в окружность основание ав

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

В окружность вписан равнобедренный треугольник АВС, АВ=ВС=10, АС (основание) =8,Найти длину окружности (С)

можно ответить на один вопрос откуда вы взяли 400 и что это вообще такое

площадь треугольника=сумма сторон/4R, где R — радиус описаной окружности.
По другой формуле площать треугольника = половина основания на высоту.
Высоту легко найти по теореме Пифагора.
корень из 84=2 корня из 21

R=400/корень из 21
длина окружности = 2 пR= 2*3,14*корень из 21

Первая формула для нахождения площади треугольника неверна. Площадь треугольника=произведение сторон/4R

Видео:№702. В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углыСкачать

№702. В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углы

Равнобедренный треугольник авс вписан в окружность основание ав

Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Равнобедренный треугольник авс вписан в окружность основание авУглы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы AOM и QAM, следовательно, эти треугольники подобны:

Равнобедренный треугольник авс вписан в окружность основание ав

Отсюда следует, что радиус вписаной окружности:

📹 Видео

Задание 16 (В1) ОГЭ по математике ▶ №11 (Минутка ОГЭ)Скачать

Задание 16 (В1) ОГЭ по математике ▶ №11 (Минутка ОГЭ)

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭСкачать

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭ

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольники

В окружность вписан равнобедренный (АС = ВС) треугольник ABC. Меньшая дуга АВ равна 105°Скачать

В окружность вписан равнобедренный (АС = ВС) треугольник ABC. Меньшая дуга АВ равна 105°

Равносторонний треугольник вписан в окружность. Найти площадь меньшего сегмента.Скачать

Равносторонний треугольник вписан в окружность. Найти площадь меньшего сегмента.

Задание 26 Окружность Равнобедренный треугольникСкачать

Задание 26 Окружность  Равнобедренный треугольник

ОГЭ 2022 Демоверсия. 25 задание | Основание AC равнобедренного треугольника ABC равно 12.....Скачать

ОГЭ 2022 Демоверсия. 25 задание | Основание AC равнобедренного треугольника ABC равно 12.....

№487. Боковая сторона равнобедренного треугольника равна 17 см, а основание равно 16 смСкачать

№487. Боковая сторона равнобедренного треугольника равна 17 см, а основание равно 16 см

Окружность описана около равнобедренного треугольника. Найти центральный уголСкачать

Окружность описана около равнобедренного треугольника.  Найти центральный угол

Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

№692. В треугольник ABC вписана окружность, которая касается сторон АВ, ВС и СА в точках Р, Q и RСкачать

№692. В треугольник ABC вписана окружность, которая касается сторон АВ, ВС и СА в точках Р, Q и R
Поделиться или сохранить к себе: