Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около правильной пирамиды
Содержание
  1. Нахождение радиуса сферы (шара), описанной около правильной пирамиды
  2. Формулы расчета радиуса сферы (шара)
  3. Правильная треугольная пирамида
  4. Правильная четырехугольная пирамида
  5. Правильная шестиугольная пирамида
  6. Пирамида, вписанная в сферу
  7. Пирамида, вписанная в сферу. Свойства пирамиды, вписанной в сферу
  8. Радиус сферы, описанной около правильной n — угольной пирамиды
  9. Отношение объемов правильной n — угольной пирамиды и шара, ограниченного сферой, описанной около данной пирамиды
  10. Формула радиус окружности пирамиды
  11. Сфера, вписанная в пирамиду
  12. Биссекторная плоскость. Основное свойство биссекторной плоскости
  13. Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
  14. Радиус сферы, вписанной в правильную n — угольную пирамиду
  15. Сфера, вписанная в треугольную пирамиду. Формула для радиуса вписанной сферы
  16. Нахождение радиуса сферы (шара), описанной около правильной пирамиды
  17. Формулы расчета радиуса сферы (шара)
  18. Правильная треугольная пирамида
  19. Правильная четырехугольная пирамида
  20. Правильная шестиугольная пирамида
  21. Формулы и свойства правильной четырехугольной пирамиды
  22. Что собой представляет пирамида
  23. Правильная треугольная пирамида.
  24. Элементы правильной пирамиды
  25. Высота фигуры
  26. Что такое пирамида в общем случае?
  27. Объем пирамиды
  28. Некоторые свойства пирамиды
  29. Правильная пирамида с треугольным основанием
  30. Формулы для высоты правильной пирамиды
  31. В правильной четырехугольной пирамиде радиус описанной около основания окружности равен 6 см. Боковые грани наклонены к плоскости основания под углом 60°. Вычислите площадь сферы, описанной около пирамиды.
  32. Ваш ответ
  33. решение вопроса
  34. Похожие вопросы
  35. Нахождение радиуса сферы (шара), описанной около правильной пирамиды
  36. Формулы расчета радиуса сферы (шара)
  37. Правильная треугольная пирамида
  38. Правильная четырехугольная пирамида
  39. Правильная шестиугольная пирамида

Видео:Стереометрия, номер 33.1Скачать

Стереометрия, номер 33.1

Нахождение радиуса сферы (шара), описанной около правильной пирамиды

В данной публикации представлены формулы, с помощью которых можно найти радиус сферы (шара), описанной около правильной пирамиды: треугольной, четырехугольной, шестиугольной и тетраэдра.

Видео:Пирамиды, в которых высота проходит через центр описанной около основания окружностиСкачать

Пирамиды,  в которых высота проходит через центр описанной около основания окружности

Формулы расчета радиуса сферы (шара)

Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.

Правильная треугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

На этом рисунке и чертежах далее:

  • a – ребро основания пирамиды;
  • h – высота фигуры.

Если эти величины даны, вычислить радиус (R) описанной вокруг пирамиды сферы/шара можно по формуле ниже:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильный тетраэдр является разновидностью правильной треугольной пирамиды. Формула для него:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильная четырехугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус (R) описанной сферы/шара вычисляется следующим образом:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильная шестиугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Формула для нахождения радиус (R) сферы/шара выглядит так:

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Пирамида, вписанная в сферу

Радиус окружности описанной около основания правильной четырехугольной пирамидыПирамида, вписанная в сферу. Свойства пирамиды, вписанной в сферу
Радиус окружности описанной около основания правильной четырехугольной пирамидыРадиус сферы, описанной около правильной n — угольной пирамиды
Радиус окружности описанной около основания правильной четырехугольной пирамидыОтношение объемов правильной n — угольной пирамиды и шара, ограниченного сферой, описанной около данной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Видео:№259. В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковойСкачать

№259. В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой

Пирамида, вписанная в сферу. Свойства пирамиды, вписанной в сферу

Определение 1. Пирамидой, вписанной в сферу, называют такую пирамиду, все вершины которой лежат на сфере (рис. 1).

Определение 2. Если пирамида вписана в сферу, то сферу называют описанной около пирамиды.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Теорема 1. Около пирамиды можно описать сферу тогда и только тогда, когда около основания пирамиды можно описать окружность.

Доказательство. Докажем сначала, что, если пирамида вписана в сферу, то около ее основания можно описать окружность. Для этого рассмотрим рисунок 2.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

На рисунке 2 изображена пирамида SA1A2 . An , вписанная в сферу. Плоскость основания пирамиды пересекает сферу по окружности, в которую вписан многоугольник A1A2 . An – основание пирамиды. Доказано.

Теперь предположим, что около основания A1A2 . An пирамиды SA1A2 . An можно описать окружность. Докажем, что в этом случае около пирамиды SA1A2 . An можно описать сферу. С этой целью обозначим центр окружности, описанной около многоугольника A1A2 . An , символом O’ и проведем прямую p, проходящую через точку O’ и перпендикулярную к плоскости многоугольника A1A2 . An (рис. 3).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Рассмотрим плоскость β, проходящую через середину отрезка SAn и перпендикулярную к этому отрезку. Если обозначить буквой O точку пересечения плоскости β с прямой p, то точка O и будет центром сферы, описанной около пирамиды SA1A2 . An . Для того, чтобы это доказать, рассмотрим следующий рисунок 4.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Итак, мы доказали, что точка O находится на одном и том же расстоянии от всех вершин пирамиды SA1A2 . An . Отсюда вытекает, что точка O является центром сферы, описанной около пирамиды SA1A2 . An .

Для завершения доказательства теоремы остается лишь доказать, что плоскость β и прямая p действительно пересекаются. Если предположить, что это не так, то из такого предположения будет следовать, что плоскость β и прямая p параллельны, а, значит, точка S лежит в плоскости A1A2 . An , что противоречит определению пирамиды.

Следствие 1. Около любой правильной пирамиды можно описать сферу.

Следствие 2. Если у пирамиды все боковые ребра равны, то около нее можно описать сферу.

Указание. Основание перпендикуляра, опущенного из вершины такой пирамиды на плоскость ее основания, является центром описанной около основания окружности. Посмотреть доказательство.

Видео:2047 радиус окружности описанной около правильного треугольника равна 36 корней из 3Скачать

2047 радиус окружности описанной около правильного треугольника равна 36 корней из 3

Радиус сферы, описанной около правильной n — угольной пирамиды

Задача 1. Высота правильной n — угольной пирамиды равна h , а длина ребра основания равна a . Найти радиус сферы, описанной около пирамиды.

Решение. Рассмотрим правильную n — угольную пирамиду SA1A2 . An и обозначим буквой O центр описанной около пирамиды сферы, а символом O’ – центр основания пирамиды. Проведем плоскость SO’An (рис. 5).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Буквой R на рисунке 5 обозначен радиус описанной около пирамиды сферы, а буквой r – радиус описанной около основания пирамиды окружности. По теореме Пифагора для треугольника O’OAn получаем

Радиус окружности описанной около основания правильной четырехугольной пирамиды(1)

Радиус окружности описанной около основания правильной четырехугольной пирамиды

из формулы (1) получаем соотношение

Радиус окружности описанной около основания правильной четырехугольной пирамиды(2)

Ответ. Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 3. Радиус сферы, описанной около правильной треугольной пирамиды с высотой h и ребром основания a , равен

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 4. Радиус сферы, описанной около правильного тетраэдра с ребром a , равен

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 5. Радиус сферы, описанной около правильной четырехугольной пирамиды с высотой h и ребром основания a , равен

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 6. Радиус сферы, описанной около правильной шестиугольной пирамиды с высотой h и ребром основания a , равен

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Отношение объемов правильной n — угольной пирамиды и шара, ограниченного сферой, описанной около данной пирамиды

Задача 2. Около правильной n — угольной пирамиды с высотой h и ребром основания a описана сфера. Найти отношение объемов пирамиды и шара, ограниченного сферой, описанной около данной пирамиды.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Воспользовавшись формулой (2), выразим объем шара, ограниченного описанной около пирамиды сферой, через высоту и ребро основания пирамиды:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Ответ. Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 7. Отношение объема правильной треугольной пирамиды с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной пирамиды, равно

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 8. Отношение объема правильного тетраэдр с ребром a к объему шара, ограниченного сферой, описанной около данного тетраэдра, равно

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 9. Отношение объема правильной четырехугольной пирамиды с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 10. Отношение объема правильной шестиугольной пирамиды с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно

Видео:10 класс, 33 урок, Правильная пирамидаСкачать

10 класс, 33 урок, Правильная пирамида

Формула радиус окружности пирамиды

Видео:Нахождение радиуса сферы, описанной около пирамидыСкачать

Нахождение радиуса сферы, описанной около пирамиды

Сфера, вписанная в пирамиду

Радиус окружности описанной около основания правильной четырехугольной пирамидыБиссекторная плоскость. Основное свойство биссекторной плоскости
Радиус окружности описанной около основания правильной четырехугольной пирамидыСфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
Радиус окружности описанной около основания правильной четырехугольной пирамидыРадиус сферы, вписанной в правильную n — угольную пирамиду
Радиус окружности описанной около основания правильной четырехугольной пирамидыСфера, вписанная в треугольную пирамиду. Формула для радиуса вписанной сферы

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Видео:🔴 Стороны основания правильной шестиугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Стороны основания правильной шестиугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Биссекторная плоскость. Основное свойство биссекторной плоскости

Определение 1. Биссекторной плоскостью двугранного угла называют такую плоскость, которая проходит через ребро двугранного угла и делит этот угол на два равных двугранных угла (рис. 1).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Утверждение 1. Точка, расположенная внутри двугранного угла, находится на одном и том же расстоянии от граней этого угла тогда и только тогда, когда она лежит на биссекторной плоскости.

Доказательство. Рассмотрим произвольную точку O, расположенную внутри двугранного угла, и проведем через эту точку плоскость δ , перпендикулярную к ребру AB двугранного угла (рис. 2).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Плоскость δ пересекает ребро AB двугранного угла в точке C, а грани двугранного угла α и β по лучам CD и CE соответственно. Угол DCE является линейным углом двугранного угла. Биссекторная плоскость γ пересекает плоскость δ по биссектрисе CF линейного угла DCE .

Таким образом, справедливость утверждения вытекает из соответствующих теорем о свойствах биссектрисы угла. Доказано.

Следствие 1. Если сфера, расположенная внутри двугранного угла, касается каждой из плоскостей граней этого угла, то центр сферы находится на биссекторной плоскости двугранного угла (рис. 3).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Видео:Быстро находим радиус описанной сферыСкачать

Быстро находим радиус описанной сферы

Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы

Определение 2. Сферой, вписанной в пирамиду, называют такую сферу, которая касается плоскостей всех граней пирамиды, причем точки касания лежат на гранях пирамиды (рис. 4).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Определение 3. Если сфера вписана в пирамиду, то пирамиду называют описанной около сферы.

Если сфера вписана в пирамиду, то она касается граней каждого внутреннего двугранного угла, образованного соседними гранями пирамиды. В соответствии со следствием 1 центр вписанной в пирамиду сферы должен находиться в точке пересечения биссекторных плоскостей всех внутренних двугранных углов, образованных соседними гранями пирамиды.

Если у пирамиды нет точки, в которой пересекаются биссекторные плоскости всех внутренних двугранных углов, образованных соседними гранями пирамиды, то в такую пирамиду нельзя вписать сферу.

Замечание 1. Для того, чтобы проверить, можно ли в пирамиду вписать сферу, достаточно проверить, существует ли точка пересения биссекторных плоскостей всех внутренних двугранных углов при основании пирамиды. Если такая точка существует, то она будет равноудалена как от основания пирамиды, так и от каждой из боковых граней.

Рассмотрим несколько типов пирамид, в которые можно вписать сферу.

Утверждение 2. Если у пирамиды SA1A2 . An основание O перпендикуляра, опущенного из вершины S на плоскость основания пирамиды, лежит внутри многоугольника A1A2 . An , а все боковые грани пирамиды наклонены под одним и тем же углом к плоскости основания пирамиды, то в такую пирамиду можно вписать сферу.

Доказательство. Пусть все боковые грани пирамиды наклонены к плоскости основания под углом φ , а высота пирамиды равна h. Рассмотрим, например, боковую грань SA1A2 и проведем в ней высоту SB (рис. 5).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

По теореме о трех перпендикулярах отрезок OB перпендикулярен ребру A1A2 . Следовательно, угол SBO является линейным углом двугранного угла между боковой гранью SA1A2 и плоскостью основания пирамиды и равен φ. Биссекторная плоскость этого двугранного угла пересекает высоту пирамиды в точке O’ (рис. 6).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Катет OB прямоугольного треугольника SOB выражается через высоту пирамиды h и угол φ по формуле

Катет OO’ прямоугольного треугольника OO’B выражается через высоту пирамиды h и угол φ по формуле

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Поскольку длина отрезка OO’ не зависит от выбора боковой грани пирамиды, то биссекторные плоскости всех внутренних двугранных углов при основании пирамиды пересекаются в точке O’, которая и является центром вписанной в пирамиду сферы.

Доказательство утверждения 2 завершено.

Поскольку у любой правильной пирамиды все внутренние двугранные углы при основании равны, то справедливо

Следствие 2. В любую правильную пирамиду можно вписать сферу, причем ее радиус R выражается через высоту пирамиды h и внутренний двугранный угол при основании пирамиды φ по формуле

Радиус окружности описанной около основания правильной четырехугольной пирамиды(1)

Видео:№258. Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания.Скачать

№258. Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания.

Радиус сферы, вписанной в правильную n — угольную пирамиду

Решение. Рассмотрим правильную n — угольную пирамиду SA1A2 . An и обозначим символом O’ центр вписанной в пирамиду сферы, а буквой O – центр основания пирамиды. Проведем плоскость через высоту пирамиды SO и апофему SB какой-либо боковой грани (рис. 7).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Буквой R на рисунке 7 обозначен радиус вписанной в пирамиду сферы, буквой r – радиус вписанной в основание пирамиды окружности, а буквой φ – внутренний двугранный угол при основании пирамиды. Из прямоугольного треугольника OSB получаем

Радиус окружности описанной около основания правильной четырехугольной пирамиды(2)

В силу следствия 2 из формул (1) и (2) получаем

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

из формулы (3) получаем соотношение

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Ответ. Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 3. Радиус сферы, вписанной в правильную треугольную пирамиду с высотой h и ребром основания a, равен

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 4. Радиус сферы, вписанной в правильный тетраэдр с ребром a, равен

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 5. Радиус сферы, вписанной в правильную четырехугольную пирамиду с высотой h и ребром основания a, равен

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Следствие 6. Радиус сферы, вписанной в правильную шестиугольную пирамиду с высотой h и ребром основания a, равен

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Видео:Вычисление радиуса сферы, описанной около правильной треугольной пирамидыСкачать

Вычисление радиуса сферы, описанной около правильной треугольной пирамиды

Сфера, вписанная в треугольную пирамиду.
Формула для радиуса вписанной сферы

Утверждение 3. В любую треугольную пирамиду можно вписать сферу.

Доказательство. Доказательство этого утверждения напоминает планиметрическое доказательство возможности вписать окружность в произвольный треугольник.

Действительно, пусть SABC – произвольный тетраэдр. Биссекторная плоскость внутреннего двугранного угла с ребром AC и биссекторная плоскость внутреннего двугранного угла с ребром AB пересекаются по некоторой прямой, проходящей через вершину A. Биссекторная плоскость внутреннего двугранного угла в ребром BC пересекает эту прямую в единственной точке O , которая и является центром вписанной сферы (рис. 8).

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Получим формулу, позволяющую вычислить радиус вписанной в тетраэдр SABC сферы. Для этого заметим, что объем пирамиды SABC равен сумме объемов пирамид OABC, OSCA, OSAB, OSCB, причем высота каждой из пирамид OABC, OSCA, OSAB, OSCB равна радиусу R вписанной в пирамиду SABC сферы. Если обозначить площади граней тетраэдра SABC символами

а объемы пирамид SABC, OABC, OSCA, OSAB, OSCB – символами

то справедливы следующие равенства:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

где символом Sполн обозначена площадь полной поверхности пирамиды SABC.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Замечание 2. Если в пирамиду (необязательно треугольную) можно вписать сферу, то, рассуждая аналогично, можно получить следующую формулу для радиуса вписанной в пирамиду сферы

Радиус окружности описанной около основания правильной четырехугольной пирамиды

где символами Vпир и Sполн обозначены объем и площадь полной поверхности пирамиды соответственно.

Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

Нахождение радиуса сферы (шара), описанной около правильной пирамиды

В данной публикации представлены формулы, с помощью которых можно найти радиус сферы (шара), описанной около правильной пирамиды: треугольной, четырехугольной, шестиугольной и тетраэдра.

Видео:11 класс. Геометрия. Объём пирамиды. 28.04.2020.Скачать

11 класс. Геометрия. Объём пирамиды. 28.04.2020.

Формулы расчета радиуса сферы (шара)

Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.

Правильная треугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

На этом рисунке и чертежах далее:

  • a – ребро основания пирамиды;
  • h – высота фигуры.

Если эти величины даны, вычислить радиус (R) описанной вокруг пирамиды сферы/шара можно по формуле ниже:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильный тетраэдр является разновидностью правильной треугольной пирамиды. Формула для него:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильная четырехугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус (R) описанной сферы/шара вычисляется следующим образом:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильная шестиугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Формула для нахождения радиус (R) сферы/шара выглядит так:

Видео:🔴 Найдите объём правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите объём правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Формулы и свойства правильной четырехугольной пирамиды

Видео:Стереометрия. ЕГЭ. Правильная четырехугольная призма описана около цилиндраСкачать

Стереометрия. ЕГЭ. Правильная четырехугольная призма описана около цилиндра

Что собой представляет пирамида

Под пирамидой понимают геометрическую фигуру пространственную, которая получается в результате соединения всех углов многоугольника с одной точкой пространства. Рисунок ниже демонстрирует расположение линий (ребер) для четырехугольной и пятиугольной пирамид.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Многоугольная грань фигуры называется ее основанием. Точка, где все треугольные грани соединяются, называется вершиной. Для определения высоты пирамиды отмеченные элементы являются важными.

Видео:КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?Скачать

КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?

Правильная треугольная пирамида.

Правильная треугольная пирамида – это пирамида, у которой основанием оказывается правильный треугольник, а вершина опускается в центр основания.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Видео:ОБЪЕМ ПИРАМИДЫСкачать

ОБЪЕМ ПИРАМИДЫ

Элементы правильной пирамиды

  • Высота боковой грани, проведенная из ее вершины называется апофема. На рисунке обозначена как отрезок ON
  • Точка, соединяющая боковые рёбра и не лежащая в плоскости основания, называется вершиной пирамиды (О)
  • Треугольники, имеющие общую сторону с основанием и одну из вершин, совпадающую с вершиной, называются боковыми гранями (AOD, DOC, COB, AOB)
  • Отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания называется высотой пирамиды (ОК)
  • Диагональное сечение пирамиды – это сечение, проходящее через вершину и диагональ основания (AOC, BOD)
  • Многоугольник, которому не принадлежит вершина пирамиды, называется основанием пирамиды (ABCD)

Если в основании правильной пирамиды лежит треугольник, четырехугольник и т.д. то она называется правильной треугольной , четырехугольной и т.д.

Треугольная пирамида есть четырехгранник — тетраэдр .

Видео:Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольникаСкачать

Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольника

Высота фигуры

Высотой пирамиды называется перпендикуляр, который из ее вершины опущен на плоскость основания. Важно понимать, что из каждой вершины, принадлежащей основанию фигуры, тоже можно провести перпендикуляр к соответствующей треугольной грани, однако он высотой не будет являться. Высота пирамиды – это единственный перпендикуляр, который является одной из важных ее линейных характеристик.

Каждому школьнику известно, что любая плоская фигура обладает геометрическим центром (в физике ему соответствует центр масс). Например, геометрический центр для произвольного треугольника определяется точкой пересечения его медиан, для параллелограмма – точкой пересечения диагоналей. Если высота пирамиды пересекает ее основание в геометрическом центре, то фигура называется прямой. Пирамида прямая, имеющая в основании многоугольник с одинаковыми сторонами и углами, называется правильной.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Рисунок выше показывает, чем отличается неправильная пирамида от правильной. Видно, что высота неправильной фигуры лежит за пределами ее основания, в то время как у правильной шестиугольной пирамиды высота находится внутри фигуры, пересекая ее основание в центре геометрическом.

Важными свойствами всех правильных пирамид являются следующие:

  • все боковые грани представляют собой равнобедренные треугольники и равны друг другу;
  • длины боковых ребер и апофем являются одинаковыми.

Видео:№255. В правильной треугольной пирамиде сторона основания равна 8 см, а плоский угол при вершинеСкачать

№255. В правильной треугольной пирамиде сторона основания равна 8 см, а плоский угол при вершине

Что такое пирамида в общем случае?

В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Мы видим что первая фигура имеет треугольное основание, вторая – четырехугольное. Две последние представлены пяти- и шестиугольным основанием. Однако боковая поверхность всех пирамид образована треугольниками. Их число точно равно количеству сторон или вершин многоугольника в основании.

Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:

  • в основании должен находиться правильный многоугольник;
  • боковая поверхность фигуры должна состоять из равных равнобедренных треугольников.

Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.

Объем пирамиды

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Формула для нахождения объема пирамиды через площадь основания и высоту:

S h> , где S — площадь основания, h — высота пирамиды.

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

Радиус окружности описанной около основания правильной четырехугольной пирамиды

боковые ребра образуют с плоскостью основания равные углы

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Верно и обратное.

Правильная пирамида с треугольным основанием

Фигура, которая получена с использованием произвольного треугольника и точки в пространстве, будет неправильной наклонной пирамидой в общем случае. Теперь представим, что исходный треугольник имеет одинаковые стороны, а точка пространства расположена точно над его геометрическим центром на расстоянии h от плоскости треугольника. Построенная с использованием этих исходных данных пирамида будет правильной.

Очевидно, что число ребер, сторон и вершин у правильной треугольной пирамиды будет таким же, как у пирамиды, построенной из произвольного треугольника.

Однако правильная фигура обладает некоторыми отличительными чертами:

  • ее высота, проведенная из вершины, точно пересечет основание в геометрическом центре (точка пересечения медиан);
  • боковая поверхность такой пирамиды образована тремя одинаковыми треугольниками, которые являются равнобедренными или равносторонними.

Правильная треугольная пирамида является не только чисто теоретическим геометрическим объектом. Некоторые структуры в природе имеют ее форму, например кристаллическая решетка алмаза, где атом углерода соединен с четырьмя такими же атомами ковалентными связями, или молекула метана, где вершины пирамиды образованы атомами водорода.

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Формулы для высоты правильной пирамиды

Существует четыре основных линейных характеристики для любой пирамиды правильной:

  • сторона основания;
  • боковое ребро;
  • апофема боковой грани;
  • высота фигуры.

Все они связаны математически друг с другом. Обозначим длину стороны основания символом a, высоту — h, апофему — hb и ребро — b. Формулы, которые эти величины связывают, имеют индивидуальный вид для соответствующей n-угольной пирамиды. Например, для правильной пирамиды четырехугольной высоту можно определить по формулам:

Эти формулы следуют из теоремы Пифагора при рассмотрении соответствующих прямоугольных треугольников внутри пирамиды.

Если рассматривается фигура с треугольным основанием, тогда справедливы следующие формулы для высоты правильной пирамиды:

В правильной четырехугольной пирамиде радиус описанной около основания окружности равен 6 см. Боковые грани наклонены к плоскости основания под углом 60°. Вычислите площадь сферы, описанной около пирамиды.

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,013
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Нахождение радиуса сферы (шара), описанной около правильной пирамиды

В данной публикации представлены формулы, с помощью которых можно найти радиус сферы (шара), описанной около правильной пирамиды: треугольной, четырехугольной, шестиугольной и тетраэдра.

Формулы расчета радиуса сферы (шара)

Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.

Правильная треугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

На этом рисунке и чертежах далее:

  • a – ребро основания пирамиды;
  • h – высота фигуры.

Если эти величины даны, вычислить радиус (R) описанной вокруг пирамиды сферы/шара можно по формуле ниже:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильный тетраэдр является разновидностью правильной треугольной пирамиды. Формула для него:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильная четырехугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Радиус (R) описанной сферы/шара вычисляется следующим образом:

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Правильная шестиугольная пирамида

Радиус окружности описанной около основания правильной четырехугольной пирамиды

Формула для нахождения радиус (R) сферы/шара выглядит так:

Поделиться или сохранить к себе: