Прямоугольный треугольник вписанный в окружность доказать что

Треугольник вписанный в окружность

Прямоугольный треугольник вписанный в окружность доказать что

Видео:Вписанный в окружность прямоугольный треугольник.Скачать

Вписанный в окружность прямоугольный треугольник.

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Прямоугольный треугольник вписанный в окружность доказать что

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Прямоугольные треугольники, вписанные в окружностьСкачать

Прямоугольные треугольники, вписанные в окружность

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Прямоугольный треугольник вписанный в окружность доказать что

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Прямоугольный треугольник вписанный в окружность доказать чтоСерединный перпендикуляр к отрезку
Прямоугольный треугольник вписанный в окружность доказать чтоОкружность описанная около треугольника
Прямоугольный треугольник вписанный в окружность доказать чтоСвойства описанной около треугольника окружности. Теорема синусов
Прямоугольный треугольник вписанный в окружность доказать чтоДоказательства теорем о свойствах описанной около треугольника окружности

Прямоугольный треугольник вписанный в окружность доказать что

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Прямоугольный треугольник вписанный в окружность доказать что

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Прямоугольный треугольник вписанный в окружность доказать что

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Прямоугольный треугольник вписанный в окружность доказать что

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Прямоугольный треугольник вписанный в окружность доказать что

Прямоугольный треугольник вписанный в окружность доказать что

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Прямоугольный треугольник вписанный в окружность доказать что

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Прямоугольный треугольник вписанный в окружность доказать что

Прямоугольный треугольник вписанный в окружность доказать что

Полученное противоречие и завершает доказательство теоремы 2

Видео:Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |Скачать

Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Прямоугольный треугольник вписанный в окружность доказать что

Видео:ОГЭ Задание 25 Окружность вписанная в прямоугольный треугольникСкачать

ОГЭ Задание 25 Окружность вписанная в прямоугольный треугольник

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Прямоугольный треугольник вписанный в окружность доказать что,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Прямоугольный треугольник вписанный в окружность доказать что

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Прямоугольный треугольник вписанный в окружность доказать чтоВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаПрямоугольный треугольник вписанный в окружность доказать чтоОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиПрямоугольный треугольник вписанный в окружность доказать чтоЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиПрямоугольный треугольник вписанный в окружность доказать чтоЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовПрямоугольный треугольник вписанный в окружность доказать что
Площадь треугольникаПрямоугольный треугольник вписанный в окружность доказать что
Радиус описанной окружностиПрямоугольный треугольник вписанный в окружность доказать что
Серединные перпендикуляры к сторонам треугольника
Прямоугольный треугольник вписанный в окружность доказать что

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаПрямоугольный треугольник вписанный в окружность доказать что

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиПрямоугольный треугольник вписанный в окружность доказать что

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиПрямоугольный треугольник вписанный в окружность доказать что

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиПрямоугольный треугольник вписанный в окружность доказать что

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовПрямоугольный треугольник вписанный в окружность доказать что

Для любого треугольника справедливы равенства (теорема синусов):

Прямоугольный треугольник вписанный в окружность доказать что,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаПрямоугольный треугольник вписанный в окружность доказать что

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиПрямоугольный треугольник вписанный в окружность доказать что

Для любого треугольника справедливо равенство:

Прямоугольный треугольник вписанный в окружность доказать что

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Прямоугольный треугольник и описанная окружностьСкачать

Прямоугольный треугольник и описанная окружность

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Прямоугольный треугольник вписанный в окружность доказать что

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Прямоугольный треугольник вписанный в окружность доказать что

Прямоугольный треугольник вписанный в окружность доказать что.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Прямоугольный треугольник вписанный в окружность доказать что

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Радиус вписанной в прямоугольный треугольник окружности

Радиус вписанной в прямоугольный треугольник окружности равен

Прямоугольный треугольник вписанный в окружность доказать что

где a и b — катеты, c — гипотенуза.

Прямоугольный треугольник вписанный в окружность доказать чтоПусть в прямоугольном треугольнике ABC катеты BC=a, AC=b, гипотенуза AB=c.

Проведём радиусы OK, OM, ON к сторонам треугольника.

Прямоугольный треугольник вписанный в окружность доказать что

Прямоугольный треугольник вписанный в окружность доказать что

(как отрезки касательных, проведённых из одной точки).

Отсюда следует, что четырёхугольник CKOM — квадрат, стороны которого равны радиусу вписанной в треугольник ABC окружности: CK=CM=OM=OK=r.

Прямоугольный треугольник вписанный в окружность доказать что

Прямоугольный треугольник вписанный в окружность доказать что

Прямоугольный треугольник вписанный в окружность доказать что

Прямоугольный треугольник вписанный в окружность доказать что

Таким образом, формула радиуса вписанной в прямоугольный треугольник окружности

💥 Видео

Прямоугольный треугольник, вписанный в окружность. ЗадачаСкачать

Прямоугольный треугольник, вписанный в окружность. Задача

✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис ТрушинСкачать

✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис Трушин

№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,Скачать

№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,

Задание 25 Прямоугольный треугольник Вписанная окружностьСкачать

Задание 25 Прямоугольный треугольник Вписанная окружность

Тема 8. Прямоугольный треугольник и его описанная и вписанная окружностиСкачать

Тема 8. Прямоугольный треугольник и его описанная и вписанная окружности

Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

Задача 6 №27932 ЕГЭ по математике. Урок 146

ЕГЭ 2022 Планиметрия Прямоугольный треугольник вписанный в окружностьСкачать

ЕГЭ 2022 Планиметрия Прямоугольный треугольник вписанный в окружность

Задание 25 Прямоугольный треугольник Вписанная описанная окружностиСкачать

Задание 25 Прямоугольный треугольник Вписанная описанная окружности

8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность

Окружность, вписанная в прямоугольный треугольник | Геометрия 8-9 классыСкачать

Окружность, вписанная в прямоугольный треугольник | Геометрия 8-9 классы
Поделиться или сохранить к себе: