- Онлайн калькулятор
- Найти угол α зная угол β и наоборот
- Найти углы прямоугольного треугольника зная катеты
- Формулы
- Пример
- Найти углы прямоугольного треугольника по катету и гипотенузе
- Все формулы прямоугольного треугольника — примеры расчетов
- Формулы
- Углы прямоугольного треугольника
- Калькулятор расчёта углов прямоугольного треугольника
- Формула тангенса
- Углы треугольника
- 🎥 Видео
Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
Онлайн калькулятор
Чтобы найти острые углы прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
- для угла α:
- угол β
- длины катетов a и b
- длину гипотенузы (с) и длину одного из катетов
- для угла β:
- угол α
- длины катетов a и b
- длину гипотенузы (с) и длину одного из катетов
Введите их в соответствующие поля и получите результат.
Найти угол α зная угол β и наоборот
Формула
Найти углы прямоугольного треугольника зная катеты
Катет a =
Катет b =
Чему равны острые углы (α и β) прямоугольного треугольника если известны оба катета (a и b)?
Формулы
Пример
Для примера определим чему равны углы α и β в градусах если катет a = 5 см, а катет b = 2 см:
Найти углы прямоугольного треугольника по катету и гипотенузе
Гипотенуза c =
Катет =
Чему равны острые углы (α и β) прямоугольного треугольника если известны гипотенуза c и один из катетов (a или b)?
Видео:Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать
Все формулы прямоугольного треугольника — примеры расчетов
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Формулы
1. Сумма острых углов прямоугольного треугольника равна 90 0 :
2. Синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе:
3. Косинус острого угла в прямоугольном треугольнике равен отношению прилежащего катета к гипотенузе:
4. Тангенс острого угла равен отношению противолежащего катета к прилежащему катету:
5. Котангенс острого угла равен отношению прилежащего катета к противолежащему катету:
6. Секанс острого угла равен отношению гипотенузы к прилежащему катету:
7. Косеканс острого угла равен отношению гипотенузы к противолежащему:
8. Катет, противолежащий углу, равен произведению гипотенузы на синус этого угла:
9. Катет, прилежащий углу, равен произведению гипотенузы на косинус этого угла:
10. Катет, противолежащий углу, равен произведению второго катета на тангенс угла:
11. Катет, прилежащий углу, равен произведению второго катета на котангенс угла:
12. Гипотенуза равна отношению катета к синусу противолежащего угла, и/или частному отношению катета и косинуса прилежащего угла (угла между ними):
13. Теорема Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
14. Медианы, проведенные к катетам прямоугольного треугольника:
15. Медиана, проведенная к гипотенузе:
16. Радиус окружности, описанной около прямоугольного треугольника:
17. Радиус окружности, вписанной в прямоугольный треугольник:
18. Площадь прямоугольного треугольника равна половине произведения катетов треугольника:
Видео:№254. Найдите углы равнобедренного прямоугольного треугольника.Скачать
Углы прямоугольного треугольника
Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Калькулятор расчёта углов прямоугольного треугольника
Прямоугольный треугольник — это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние, при этом один из углов прямой (равен 90°).
Тангенс угла tg(α) — это тригонометрическая функция выражающая отношение противолежащего катета a к прилежащему катету b.
Формула тангенса
- tg α — тангенс угла α
- a — противолежащий катет
- b — прилежащий катет
Арктангенс — это обратная тригонометрическая функция. Арктангенсом числа x называется такое значение угла α, выраженное в радианах, для которого tg α = x . Вычислить арктангенс, означает найти угол α, тангенс которого равен числу x.
Видео:Найдите углы прямоугольного треугольника, если его гипотенуза равна 12, а площадь равна 18Скачать
Углы треугольника
Сумма углов треугольника всегда равна 180 градусов:
Так как у прямоугольного треугольника один из углов равен 90°, то сумма двух других углов равна 90°.
Поэтому, если известен один из острых углов треугольника, второй угол можно посчитать по формуле:
Острый угол — угол, значение которого меньше 90°.
У прямоугольного треугольника один угол прямой, а два других угла — острые.
🎥 Видео
ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать
ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать
Площадь треугольника. Как найти площадь треугольника?Скачать
Свойства прямоугольного треугольника. 7 класс.Скачать
Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать
Решение прямоугольных треугольниковСкачать
7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать
ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать
Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать
Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать
Нахождение стороны прямоугольного треугольникаСкачать
Прямоугольный треугольник Полное досьеСкачать