Проекция треугольника 8 класс

Прямоугольный треугольник формулы

Треугольник называется прямоугольным, если у него один из углов является прямым. Стороны, прилежащие к прямому углу, называются катетами, а сторона, лежащая напротив прямого угла, гипотенузой.

Прямоугольный треугольник: основные формулы

Проекция треугольника 8 класс

Прямоугольный треугольник: формулы площади и проекции

Проекция треугольника 8 класс

  1. Высота прямоугольного треугольника, проведенная к гипотенузе, равна : h = (ab):c.
  2. Высота прямоугольного треугольника, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу: CH 2 = AH·BH.
  3. Катет прямоугольного треугольника — среднее пропорциональное или среднее геометрическое между гипотенузой и проекцией этого катета на гипотенузу: CA 2 = AB·AH; CB 2 = AB·BH.
  4. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна ее половине.
  5. Площадь прямоугольного треугольника равна половине произведения катетов. S = (ab):2.
  6. Площадь прямоугольного треугольника равна половине произведения гипотенузы и высоты. S = (hc):2.

Прямоугольный треугольник: формулы тригонометрия

  1. Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе. cosα = AC: AB.
  2. Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе. sinα = BC:AB.
  3. Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему. tgα = BC:AC.
  4. Котангенс острого угла прямоугольного треугольника равен отношению прилежащего катета к противолежащему. ctgα = AC:BC.
  5. Основное тригонометрическое тождество: cos 2 α + sin 2 α = 1.
  6. Теорема косинусов: b 2 = a 2 + c 2 – 2ac·cosα.
  7. Теорема синусов: CB :sinA = AC : sinB = AB.

Прямоугольный треугольник: формулы для описанной окружности

Проекция треугольника 8 класс

  1. Радиус описанной окружности равен половине гипотенузы : R=AB:2.
  2. Центр описанной окружности лежит на середине гипотенузы.

Прямоугольный треугольник: формулы для вписанной окружности

Проекция треугольника 8 класс

Радиус окружности, вписанной в прямоугольный треугольник, вычисляется по формуле: r = (a + b -c):2.

Рассмотрим применение тригонометрических формул прямоугольного треугольника при решении задания 6(вариант 32) из сборника для подготовки к ЕГЭ по математике профиль автора Ященко.

В треугольнике ABC угол С равен 90°, sinA = 11/14, AC =10√3. Найти АВ.

  1. Применяя основное тригонометрическое тождество, найдем cosA = 5√3/14.
  2. По определению косинуса острого угла прямоугольного треугольника имеем: cosA = AC : AB, AB = AC : cosA = 10√3·14:5√3 = 28.

Видео:Геометрия 8. Урок 10 - Теорема Пифагора. Наклонная и проекция.Скачать

Геометрия 8. Урок 10 - Теорема Пифагора. Наклонная и проекция.

Проекция треугольника 8 класс

Проекция треугольника 8 классПроекция треугольника 8 класс

§ 16. Теорема Пифагора.

Проекция треугольника 8 классПроекция треугольника 8 класс

§ 17. Тригонометрические функции острого угла прямоугольного треугольника.

Проекция треугольника 8 классПроекция треугольника 8 класс

Проекция треугольника 8 класс

Проекция треугольника 8 класс

Проекция треугольника 8 класс

§ 18. Решение прямоугольных треугольников.

Проекция треугольника 8 классПроекция треугольника 8 класс

Проекция треугольника 8 класс

ИТОГИ ГЛАВЫ 3

Метрические соотношения в прямоугольном треугольнике
Квадрат высоты прямоугольного треугольника, проведённой к гипотенузе, равен произведению проекций катетов на гипотенузу. Квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу.

Теорема Пифагора
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Синус острого угла прямоугольного треугольника
Синусом острого угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе.

Косинус острого угла прямоугольного треугольника
Косинусом острого угла прямоугольного треугольника называют отношение прилежащего катета к гипотенузе.

Тангенс острого угла прямоугольного треугольника
Тангенсом острого угла прямоугольного треугольника называют отношение противолежащего катета к прилежащему.

Котангенс острого угла прямоугольного треугольника
Котангенсом острого угла прямоугольного треугольника называют отношение прилежащего катета к противолежащему.

Тригонометрические формулы
Проекция треугольника 8 класс

Соотношения между сторонами и значениями тригонометрических функций углов в прямоугольном треугольнике

  • Катет прямоугольного треугольника равен произведению гипотенузы на синус угла, противолежащего этому катету.
  • Катет прямоугольного треугольника равен произведению гипотенузы на косинус угла, прилежащего к этому катету.
  • Катет прямоугольного треугольника равен произведению второго катета на тангенс угла, противолежащего первому катету.
  • Катет прямоугольного треугольника равен произведению второго катета на котангенс угла, прилежащего к первому катету.
  • Гипотенуза прямоугольного треугольника равна частному от деления катета на синус противолежащего ему угла.
  • Гипотенуза прямоугольного треугольника равна частному от деления катета на косинус прилежащего к нему угла.

«Мерзляк Геометрия 8 Глава 3» СОДЕРЖАНИЕ: § 15. Метрические соотношения в прямоугольном треугольнике. § 16. Теорема Пифагора. § 17. Тригонометрические функции острого угла прямоугольного треугольника. § 18. Решение прямоугольных треугольников.

Это конспект по теме «Мерзляк Геометрия 8 Глава 3». Выберите дальнейшие действия: Вернуться к Списку конспектов по геометрии.

Видео:8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольникеСкачать

8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольнике

Проекции катетов на гипотенузу

Так как высота, проведенная к гипотенузе, представляет собой проведенный к ней перпендикуляр, то катеты — это наклонные, а отрезки гипотенузы, на которые делит ее высота — проекции катетов на гипотенузу прямоугольного треугольника.

Проекция треугольника 8 классВ треугольнике ABC, изображенном на рисунке, AD — проекция катета AC на гипотенузу AB, BD — проекция катета BC на гипотенузу.

Катеты, их проекции на гипотенузу, гипотенуза и высота прямоугольного треугольника связаны между собой формулами.

1) Свойство высоты, проведенной к гипотенузе.

Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое (среднее пропорциональное) между проекциями катетов на гипотенузу.

Проекция треугольника 8 класс

Проекция треугольника 8 класс

2) Свойства катетов прямоугольного треугольника.

Катет прямоугольного треугольника есть среднее геометрическое (среднее пропорциональное) между гипотенузой и проекцией этого катета на гипотенузу.

🎥 Видео

Свойства проекций катетов | Геометрия 8-9 классыСкачать

Свойства проекций катетов | Геометрия 8-9 классы

Наклонная, проекция, перпендикуляр. 7 класс.Скачать

Наклонная, проекция, перпендикуляр. 7 класс.

Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

Решение прямоугольных треугольников. Практическая часть. 8 класс.

Черчение. 8 класс. Мазаева И.М. Изометрия и ДиметрияСкачать

Черчение. 8 класс. Мазаева И.М. Изометрия и Диметрия

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

#Проекция катета на гипотенузуСкачать

#Проекция катета на гипотенузу

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Геометрия 8 класс (Урок№10 - Площадь треугольника.)Скачать

Геометрия 8 класс (Урок№10 - Площадь треугольника.)

8 класс, 14 урок, Площадь треугольникаСкачать

8 класс, 14 урок, Площадь треугольника

Теорема Пифагора. 8 КЛАСС | Математика | TutorOnlineСкачать

Теорема Пифагора. 8 КЛАСС | Математика | TutorOnline

Математика | Метрические соотношения в прямоугольном треугольникеСкачать

Математика | Метрические соотношения в прямоугольном треугольнике

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

Решение прямоугольных треугольников. Практическая часть. 8 класс.

Треугольная призма. Ортогональные и изометрическая проекции. Урок 10.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

Треугольная призма. Ортогональные и изометрическая проекции. Урок 10.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)

8 класс, 22 урок, Первый признак подобия треугольниковСкачать

8 класс, 22 урок, Первый признак подобия треугольников

8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать

8 класс, 21 урок, Отношение площадей подобных треугольников

Построение аксонометрических проекцийСкачать

Построение аксонометрических проекций
Поделиться или сохранить к себе: