Разделы: Математика
Круг и окружность – одни из самых древнейших геометрических фигур, философы древности придавали им большое значение. Круг – воплощение нескончаемого Времени и Пространства, символ всего сущего, Вселенной. “Из всех фигур прекраснейшая – круг”, – считал Пифагор.
Вокруг нас много круглых предметов. Представьте себе на секунду, что вдруг случилась беда: на Земле исчезло все круглое! Казалось бы – пусть все будет квадратным. Разве нельзя прожить без круглых труб, а к квадратным колесам нельзя привыкнуть? Можно ли вообще представить жизнь человека без использования круга? Почему так много тел имеют круглую форму? Чтобы найти ответы на все эти вопросы, в первую очередь, необходимо рассмотреть историю возникновения этих понятий и дальнейшее их развитие.
История возникновения и развития геометрических понятий “круг” и “окружность”.
Для первобытных людей важную роль играла форма окружавших их предметов. По форме и цвету они отличали съедобные грибы от несъедобных, пригодные для построек породы деревьев от тех, которые годятся лишь на дрова, вкусные орехи от горьких и т.д. Особенно вкусными казались им орехи кокосовой пальмы, похожие на шар. Специальных названий для геометрических фигур, конечно, не было. Говорили: “такой же, как кокосовый орех” или “такой же, как соль” и т.д. Так, овладевая окружающим их миром, люди знакомились с простейшими геометрическими фигурами.
Круглые тела еще в древности заинтересовали человека. В Древнем Египте для постройки знаменитых египетских пирамид никаких технических сооружений еще не было. Даже шлифовать огромные каменные глыбы приходилось вручную, а перемещали их с помощью бревен круглой формы. Заметили, что перекатка проще, если взять кусок дерева с почти одинаковой толщиной в начале и в конце. Так люди познакомились с одним из важнейших тел – цилиндром. Скалками цилиндрической формы пользовались и женщины, раскатывая белье после стирки. Перевозить грузы на катках было довольно тяжело, потому что сами древесные стволы весили много. Чтобы облегчить работу, стали вырезать из стволов тонкие круглые пластинки, которые катились уже легче и с их помощью перетаскивали грузы. Так появилось первое колесо. К сожалению, неизвестен непосредственный изобретатель колеса.
Не только в процессе работы люди знакомились с различными фигурами. Издавна они любили украшать себя, свою одежду, свое жилище. И многие, созданные давным-давно украшения, имели ту или иную форму. Бусинки были шарообразными, браслеты и кольца имели форму окружности. Древние мастера научились придавать красивую форму бронзе, золоту, серебру, драгоценным камням. Художники, расписывавшие дворцы, тоже использовали окружность. Со времени изобретения гончарного круга люди научились делать круглую посуду – горшки, вазы, амфоры. Круглыми были и колонны, подпирающие здания.
Математические знания египтян и вавилонян были разрозненные и представляли собой свод правил, проверенных практикой. В Древней Греции все разрозненные знания привели в систему, геометрия стала бурно развиваться как наука. Только в Древней Греции “окружность” и “круг” получили свои названия, почти все названия геометрических фигур греческого происхождения, как и само слово геометрия (“гео” – земля, а “метрио” – мерить). Однако эти слова вошли в русский язык не непосредственно с греческого, а через латинский язык.
В Древней Греции многие свойства фигур, в том числе круга и окружности были сформулированы в виде теорем и доказаны. Наиболее удачно была изложена геометрия, как наука о свойствах геометрических фигур, греческим ученым Евклидом (III в. до н. э.) в своих книгах “Начала”. В течение многих веков “Начала” были единственной учебной книгой, по которой молодежь изучала геометрию. И даже сейчас, в наше время, учебники написаны под большим влиянием “Начал” Евклида.
Окружность и круг – это плоские фигуры . Мы живем в мире трех измерений. А в какое геометрическое тело превратятся окружность и круг, если попадут в пространство? Это сфера и шар. “Сфера” – произошло от греческого слова “сфайра”, в переводе – “мяч”. Кроме этого геометрия пространства рассматривает и другие круглые тела – это “цилиндр” (от греческого слова “кюлиндрос”, что означает “валик”, “каток”) и “конус” (от греческого слова “конос”, означающего “сосновая шишка”). Самым важным среди круглых тел был шар.
Итак, в Древней Греции круг и окружность считали венцом совершенства. “В каждой своей точке окружность устроена одинаковым образом, что позволяет ей двигаться самой по себе”. Это свойство окружности стало толчком к возникновению колеса (Приложение 5). (Приложение 2).
Круг – “циркулус” – латинское слово, от него же и “циркуль”, без которого бы мы не построили круг. Циркуль и линейка – самые старые чертежные инструменты на Земле. (Приложение 3.)
Элементы окружности и круга (Приложение 2):
Радиус окружности – это отрезок, соединяющий центр окружности с любой ее точкой (по-латыни – спица колеса).
Диаметр окружности – это хорда, проходящая через центр окружности (с греческого – “поперечник”).
Хорда окружности – отрезок, соединяющий любые две точки на окружности (с греческого– “струна”).
Дуга окружности – это часть окружности, ограниченная двумя точками.
Часто в практических задачах нужно узнать длину окружности. А как измерить длину окружности, если сама окружность – кривая линия, а единица измерения длины – отрезок? Есть несколько способов измерения длины окружности (Приложение 1).
Однако эти способы непосредственного измерения длины окружности малоудобны и дают приближенные результаты. Поэтому уже с древних времен начали искать более совершенные способы измерения длины окружности. В процессе измерений заметили, что между длиной окружности и длиной ее диаметра имеется определенная зависимость: С:d ≈ 3,1.
Многие ученые – математики пытались доказать, что это отношение есть число постоянное, не зависящее от размеров окружности, его стали обозначать греческой буквой π-ο ервая буква греческого слова “периферия” – круг.
С:d = π, где С – длина окружности, d – длина диаметра, отсюда и формула длины окружности C = πd или C = 2πr.
Изучив исследования ученых математиков, мы провели следующие измерения и вычисления:
1. Вычисление числа пи : а) с помощью тонкой нити измерили длину окружности С некоторых предметов быта; б) чтобы точнее найти длину диметра d, приложили этот предмет к листу бумаги и обвели карандашом, вырезали, свернули пополам, линия сгиба – это диаметр, измерили его с помощью линейки; в) нашли отношение С:d, данные занесли в таблицу:
Предметы | Длина окружности С | Диаметр d | Отношение С:d |
Стакан | 22 см | 7 см | 3.1428 |
Ведро | 82 см | 26 см | 3.1538 |
Тарелка | 62 см | 19,5 см | 3,1794 |
Кастрюля | 69 см | 22 см | 3.1363 |
Бидон | 52 см | 16,5 см | 3,1515 |
2. Границы значения числа пи: а) с помощью циркуля вписали круг в квадрат: если диаметр равен 1,то длина окружности равна π . Периметр квадрата со стороной 1 равен 4. Значит π меньше 4. (Приложение 6. Рис.1). б) в этот же круг вписали правильный шестиугольник: диаметр круга снова 1, длина окружности равна π . Сторона правильного шестиугольника равна радиусу, т.е.0,5,а периметр равен 6·0,5=3,значит π больше 3 (Приложение 6. Рис.2).
В результате мы убедились, что отношение длины окружности к ее диаметру (число π) есть число постоянное и 3 ‹ π ‹ 4 ,т.е. мы подтвердили исследования ученых – математиков.
Одна из загадок числа π состоит в том, что оно не может быть выражено какой – либо точной дробью. История числа π достойна восхищения, многие математики затратили на его вычисления не один десяток лет. Уточнялись нижняя и верхняя оценки числа и предпринимались неудачные попытки представить π в виде дроби и, таким образом, окончательно найти его значение (Приложение 4). Пока рекорд принадлежит японскому математику, в 2004 году – Ясума Канада из Токио рассчитал число π на компьютере до 1,24 триллиона знаков.
π -3,141 592 653 589 793 238 462 643 383279 502 884197 169 399 375 105 ….
Зачем нужно π, да еще с такой точностью? Число π чрезвычайно важно для ученых и инженеров. Все, что круглое и все, что движется по кругу (как колеса или планеты), содержит π. Без π люди не могли создать автомобили, понять движение планет или сосчитать сколько гороха поместится в консервную банку. Но загадка таинственного числа не разрешена вплоть до сегодняшнего дня, и, по-прежнему, волнует ученых. В настоящее время с числом π связано труднообозримое множество формул, математических и физических фактов. Их количество продолжает стремительно расти. Все это говорит о возрастающем интересе к важнейшей математической константе, изучение которой насчитывает уже более двадцати двух веков.
Изучив литературу и проделав собственные измерительные исследования с окружностью и кругом, мы пришли к следующим выводам: окружность и круг – это удивительно гармоничные фигуры. Окружность – единственная кривая, которая может “скользить сама по себе”, вращаясь вокруг центра. Это свойство окружности дает ответ на вопросы, почему для ее вычерчивания используют циркуль, и почему колеса делают круглыми, а не квадратными или треугольными.
Круг в окружающей жизни.
Исследуя вопрос о роли круга в окружающей жизни, мы провели анкетирование обучающихся 5-9 классов и педагогов МО ШИСП (всего 90 человек):
- Какие круглые тела вы встречаете в окружающей жизни?
- Какое значение имеет круг в других науках?
- Какие практические задачи повседневной жизни решаются, используя знания о круге и окружности?
- Как вы считаете, почему встречается так много круглых тел в природе?
Ответы на первый вопрос представлены в презентации.
Из ответов учителей – предметников на второй вопрос анкеты мы поняли, что круг имеет большое значение не только в математике, но и в других науках:
Предмет | Использование |
Физика и астрономия | Движение небесных тел происходит по круговым орбитам. Зодиакальный круг, астрономический круг. Круг с точкой в центре символизирует солнце. |
География | Меридианы и параллели, определяющие положение тела на земном шаре, экватор. Круговые процессы-циклы: круговорот воды и веществ в природе. Смена времен года, смена дня и ночи. |
Химия | Строение атома: ядро круглое, электроны вращаются вокруг ядра по круговым орбитам. |
Биология | У всех клеток есть круглое ядро. Круглую форму имеют клетки крови, цилиндрическую – клетки многих желез. Стебли растений и стволы деревьев, кости человека – круглые. Кровообращение идет по кругу. Овощи и фрукты имеют шарообразную или конусовидную форму. Цикличность развития живых существ. |
Русский язык | В русском языке слово “круглый” означает высокую степень чего-либо: “круглый отличник”, “круглый сирота” и даже “круглый дурак”. От слова круг образовано множество различных слов: круглый, кругленький, округлить, округлиться, округлый, кругом, вокруг, окружать, кружить и многое другое. Округлые формы, круглое лицо, кругленькие щеки, круглый год, голова идет кругом, ходить по кругу – часто употребляемые выражения. |
История и обществознание | “Круглый стол” – конференции, кругооборот капитала, круг семьи , колесо истории, “большой и малый круг истории” – исторические циклы. |
Проанализировав ответы на третий вопрос анкеты, мы поняли, что знания о круге и окружности позволяют человеку решать многие практические задачи в повседневной жизни: разбить клумбу или фонтан, сделать круглую крышу, окно или крышку, сшить головной убор, связать салфетку, сделать елочную игрушку, сделать выкройку платья или юбки, нарисовать узор и т.п.
Таким образом, круг в жизни человека имеет очень важную роль, и в жизни без круглых предметов обойтись невозможно.
Не все, кого мы анкетировали, смогли дать ответ на четвертый вопрос.
Здесь мы помещаем самые интересные и распространенные ответы:
- Только круглые предметы могут катиться, и поэтому их легче перемещать.
- Потому что, куда бы мы не пошли, мы возвращаемся, т.е. идем по кругу.
- У круга нет углов, и поэтому он удобен в применении, например, круглые монеты не могут порвать карман, о них не уколешься, не порежешься.
- Мячик не может быть квадратным, он не будет отпрыгивать.
- Посуду делали из глины, и округлую форму было легче придать, чем квадратную. Круглую посуду легче мыть, не надо выскребать из углов, в ней удобней размешивать.
- Легче изготовить круглое, чем угловатое. Многие технические процессы легче для тел вращения.
- На круглую форму идет меньше материала, чем на квадратную.
- Круглая крышка люка никогда не провалится, в отличие от квадратной.
- Все банки и крышки круглой формы, т.к. каждая точка окружности является точкой концентрации напряжения, и ее легко открыть, у прямоугольной формы такими точками являются только углы.
- Потому ,что солнце круглое, а без солнца мы не могли бы существовать.
- Круглая форма универсальна в природе.
Почему же на самом деле встречается так много круглых тел? Мы обратились к научным источникам. На этот вопрос можно ответить, рассмотрев мыльный пузырь, т.к. он идеально круглой формы. Силы поверхностного натяжения не дают лопнуть мыльному пузырю и стремятся придать мыльному пузырю максимально компактную форму. Самая компактная форма в природе – это шар. При шарообразной форме воздух внутри пузыря равномерно давит на все участки его внутренней стенки.
В небе много круглых объектов: Солнце, Луна, планеты, звезды. Почему не быть хотя бы одной некруглой планете? Ну, пусть одна, будет кубическая или пирамидальная. Но это невозможно? Есть сила, которая во всей Вселенной превращает миры в гладкие шары. Эта сила – сила тяготения. Каждый предмет имеет свою гравитацию, притягивает к себе другие тела, а также и свои части. Чем больше тело, тем сила тяжести увеличивается. Земля наша огромная, поэтому она имеет свою большую силу тяжести, которая заставляет притягиваться все к ее центру, а тело преобразовываться в шар. Если бы в силу каких-то причин удалось изменить нашу планету и придать ей иную форму, не шара, то спустя некоторое время она снова стала бы шарообразной. С телами на земле это не происходит, потому что их сила очень маленькая и сила тяжести Земли препятствует этому. Но если взять, например, каплю воды и запустить в космос, она сразу же преобразуется в шар. Именно жидкость способна преобразовываться в шарообразную форму. Земля состоит в основном из магмы (жидкости) поэтому и имеет форму шара.
Таким образом, мы пришли к выводам, что сама природа выбирает эту удобную и компактную форму – шара.
Кроме того, окружность и круг в виде сферы и шара – самая распространенная форма во Вселенной.
Круг и окружность – это еще и траектория движения Земли вокруг Солнца, это перемещение звезд на небе, это цикличность всех процессов, происходящих в мире. Если бы необходимо было бы выбрать форму, наиболее точно передающую устройство мира, то это были бы окружность и круг.
Изучив научную литературу, мы сделали вывод, что с незапамятных времен люди используют в своей жизни круг.
1. Около 3300 года до нашей эры стали применять гончарный круг, делать круглую посуду – тарелки, вазы, кастрюли, горшки, сковородки. У посуды есть окружность (верхний край) и круг (дно).
2. Мы не можем представить свою жизнь без машин: автобус, трактор, велосипед, швейная, стиральная и пишущая машинки, самолет, вездеход, луноход, различные станки, подъемный кран…Они не похожи друг на друга, но присмотримся к ним повнимательнее. Есть у них у всех похожие части – детали, и одна из них – колесо. Сначала колеса были круглые и гладкие, чтобы по земле легко катились, а потом человек придумал много разных колес. Зубчатые колеса спрятаны внутри многих машин, одно колесо заставляет вращаться другое, колеса с желобком –блоки, помогающие поднимать тяжелые грузы. Машины из века в век совершенствовались и совершенствуются, но неизменным остается использование в них колеса, как основной детали.
3. Круг и окружность широко применяются в архитектуре и искусстве: круглые арки, своды, купола. Круг – это форма кочевых шатров и поселений, у многих народов символизирующая динамизм и бесконечное движение в противовес квадратам домов, участкам земли и городам оседлых и зерносеющих народов. Еще древние греки обнаружили, что с помощью циркуля и линейки можно построить множество фигур, включая шестиугольники, квадраты и другие правильные многоугольники, и создавать волшебные узоры.
4. Необозрима сфера применения круга в математике: тригонометрический круг, круги Эйлера, задачи на построение, круговые диаграммы и т.д. Многие приборы имеют круглую шкалу, в математике таким прибором является транспортир (Приложение 7).
Есть в математике задачи, которые до сих пор не разрешены, например, знаменитая задача о “квадратуре круга” – о построении квадрата, равновеликого данному кругу и т.д.
5. Картинки с волшебными кругами люди используют в медицинских целях, когда на них смотришь, кажется, что они двигаются. Если смотреть на них несколько минут, то проходит головная боль (Приложение 8).
6. Также человек использует круг, как универсальный символ, означающий целостность, непрерывность, первоначальное совершенство, бесконечность, отсутствие начала и конца, верха и низа, цикличность, повторяемость, завершенность. Три концентрических круга символизируют прошлое, настоящее и будущее; три сферы земли: землю, воздух и воду; небесные миры, землю и преисподнюю; фазы луны; восходящее, полуденное и заходящее солнце. Многие народы используют круг в религии, как символ связи земного с космосом.
В последнее время в разных местах земного шара стали появляться круги на полях, которые создают посланцы иных миров, желая о чем-то предупредить землян. (Приложение 9).
7. В энциклопедии мы нашли еще много понятий связанных с кругом: кругловязальная машина, круглочулочный автомат, круглогубцы, кругломер, “круговая система” в спорте, кругозор, круг друзей, круг общения, спасательный круг, святой круг, спиритический круг, круговая оборона, круговая порука, круглосуточная аптека, круги вокруг глаз.
- Круг в жизни человека имеет очень важную роль, и без использования круглых предметов обойтись невозможно.
- Окружность и круг – удивительно гармоничные, совершенные, простые фигуры. Окружность – единственная замкнутая кривая, которая может “скользить сама по себе”, вращаясь вокруг центра, поэтому колеса делают круглыми, а не квадратными или треугольными.
- Круг – это колесо. Колесо – это прогресс – движение вперед. Если остановится колесо, то остановится колесо Истории. Остановятся все виды транспорта, остановятся все часы и механизмы, фабрики и заводы.
- Круг – символ цикличности, повторяемости. Все движется по кругу.
- Круг дает ощущение взаимосвязи с Космосом.
- Сама природа выбирает эту удобную и компактную форму как шар и круг.
- Презентация по математике на тему «Окружность в природе» (7 класс)
- «Управление общеобразовательной организацией: новые тенденции и современные технологии»
- Описание презентации по отдельным слайдам:
- Дистанционное обучение как современный формат преподавания
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Математика: теория и методика преподавания в образовательной организации
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Дистанционные курсы для педагогов
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Круги и окружности вокруг нас
- Скачать:
- Подписи к слайдам:
- 📸 Видео
Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать
Презентация по математике на тему «Окружность в природе» (7 класс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Окружность в природе Автор: Иванова Екатерина Владимировна
Цель проекта: Найти и описать те явления природы, которые включают в себя свойства окружности. Задачи: 1. Познакомиться с источниками, обработать информацию. 2. Определить, какие свойства окружности можно увидеть в природе. 3. Представить информацию в виде презентации.
Содержание Историческая справка об окружности Окружность как геометрическая фигура Окружность в явлениях природы Вывод
Историческая справка об окружности Окружность относится к одной из древнейших и самых простых геометрических фигур, которые интересовали еще древних философов. Древние греки «круг» и «окружность» считали венцом совершенства. В каждой своей точке окружность устроена одинаковым образом, что позволяет ей двигаться самой по себе.
Окружность как геометрическая фигура Под фигурой в геометрии подразумевается совокупность или множество точек. Окружность с центром О и радиусом R есть совокупность таких точек М, что ОМ=R
Окружность в явлениях природы Проблемный вопрос: Какие же тайны окружности хранит в себе планета Земля?
Явление первое Вы не раз, конечно, с любопытством рассматривали те круги, которые порождает брошенный в спокойную воду камень. И вас, без сомнения, никогда не затрудняло объяснение этого поучительного явления природы: волнение распространяется от начальной точки во все стороны с одинаковой скоростью; поэтому в каждый момент все волнующиеся точки должны быть расположены на одинаковом расстоянии от места возникновения волнения, т. е. на окружности.
Явление второе Горит лес, лесной пожар. Пожарные ощущают, как огненный вал волнами распространяется вокруг горящего леса. Ближе к центру пожара – жарче, а подальше – жар спадает. Почему жарко при горении? Выделяется тепловая энергия при сгорании деревьев, она распространяется волнами вокруг источника горения. Геометрическая форма тепловой волны – круг, окружность.
Явление третье Растительный мир, как и неодушевленные явления, стремится к правильным геометрическим фигурам. Пример того круги, образующиеся в стволе в зависимости от роста дерева.
Явление четвертое Волновые явления, т.е. распространение энергии в виде кругов (окружностей) можно наблюдать в живой природе, растениях и в организме человека. Простейшая частица в природе атом (см. рисунок). Из них состоит вся материя в мире. Он имеет орбиту, имеющую форму сферы (на плоскости – окружность). По круговой орбите вращается электрон вокруг ядра атома. Из атомов состоит все в природе – вещества, растения, человек. Простейшая клетка начинается с ядра, оно круглое, т.е. в двухмерном режиме он окружность.
2) Вокруг корешков лука существует очень слабое излучение, невидимое глазом. На фотопластинке особой чувствительности, вокруг каждого корешка видны концентрические окружности, т.к. живые растущие ткани излучают энергию в виде электромагнитных волн, имеющих форму окружности.
3) Человек это биологическая система. Теперь уже никого не удивишь, сказав, что у человека существует «аура» (электромагнитное излучение, идущее от всех органов человека). Его можно увидеть при помощи высокочувствительных приборов. Ещё древние рисовали на иконах святых вокруг головы нимб, в виде окружности.
Источником волн или автоволн в различных средах являются вихри – вращающиеся волны. И тогда мы наблюдаем концентрические волны или круговые волны. Если на пути волны, изначально имеющей форму окружности, появляется препятствие, то образуется спиральная волна. Спираль (лат.) – плоская, кривая (бесконечная) линия, делающая ряд постепенно увеличивающихся по размерам оборотов (завитков) вокруг точки или оси. В природе существует множество примеров расположения по спирали (
Явление пятое Не менее интересным фактом, связанным с окружностью, является круговорот воды в природе, который, по сути, происходит по кругу. Ведь, вначале вода, испаряясь из океана, подымается в виде пара и превращается в облака. Потом, эта же вода выпадает в виде каких-либо осадков, проникая через пласты земли вначале в подземные реки, потом с помощью обычной реки опять попадает в океан. И так далее по кругу.
Явление шестое Солнечное гало — оптическое явление, возникающее вследствие преломления и отражения света в ледяных кристаллах в атмосфере.
Явление седьмое Появление на полях секторов окружности, которые соединены диаметральными ступеньками. Впервые такое необычное явление было обнаружено в 2008 году в Великобритании. И с этого времени ученые-уфологи необъяснимые круги стали наблюдать периодически в разных уголках нашей планеты. Ученые пришли к общему мнению и считают, что такой круг кодирует первые десять цифр знаменитой математической константы Пи. Однако до конца это явление не было изучено и истинная причина появления этих кругов пока неизвестна.
Вывод Изучая явления природы приходишь к выводу, что окружающие нас окружности в природе содержат в себе математические свойства линий окружности.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 939 человек из 80 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 318 человек из 70 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 694 человека из 75 регионов
Ищем педагогов в команду «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 478 743 материала в базе
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Дистанционные курсы для педагогов
Другие материалы
- 17.02.2016
- 1179
- 17.02.2016
- 1807
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 17.02.2016 3554 —> —> —> —>
- PPTX 691 кбайт —> —>
- Оцените материал:
Настоящий материал опубликован пользователем Иванова Екатерина Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На проекте: 5 лет и 11 месяцев
- Подписчики: 0
- Всего просмотров: 3592
- Всего материалов: 1
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Окружность. 7 класс.Скачать
Дистанционные курсы
для педагогов
548 курсов от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Госдуме призвали обсуждать на школьных уроках тему опасности абортов
Время чтения: 1 минута
В России могут создать комиссию по поддержке одаренных детей
Время чтения: 1 минута
В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей
Время чтения: 1 минута
Порядка 65% выпускников российских вузов идут работать по специальности
Время чтения: 1 минута
В России утвердили новые правила аккредитации образовательных учреждений
Время чтения: 1 минута
Более 800 вузов проведут прием через суперсервис
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать
Круги и окружности вокруг нас
Проет на тему: «Круги и окружности вокруг нас». Целью работы является исследование различных сторон нашей жизни на присутствие в них кругов и окружностей.
Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Скачать:
Вложение | Размер |
---|---|
krugi_i_okruzhnosti_vokrug_nas.pptx | 857.26 КБ |
Предварительный просмотр:
Видео:Окружность и круг, 6 классСкачать
Подписи к слайдам:
Название проекта: «Круги и окружности вокруг нас» Автор проекта: Картамышев Владислав , 5 класс Руководитель проекта: Надеина Г.В. – учитель математики
Актуальность темы. На уроках математики мы изучали тему: «Окружность. Круг.» Мне захотелось узнать, как часто круги и окружности встречаются в повседневной жизни.
Гипотеза. Я думаю, что круги и окружности можно встретить где угодно в нашей жизни. Цель проекта: исследовать различные стороны нашей жизни на присутствие в них кругов и окружностей. Задачи проекта: повторить понятие круга и окружности, их элементов: центр, радиус и диаметр.
Окружность является замкнутой линией. Фигура, ограниченная окружностью – это круг.
Ещё древние греки считали окружность самой совершенной фигурой. Она обладает замечательным свойством : все точки окружности находятся на одинаковом расстоянии от одной точки – её центра . О
Отрезок, который соединяет центр окружности с какой-либо её точкой, называют радиусом окружности. О В
О В А Отрезок, который соединяет две точки окружности и проходит через её центр, называют диаметром окружности.
Радиус окружности 4 см 5 мм. Чему равен её диаметр?
Чаще всего окружность встречается в виде колеса. Вот малыша везут в коляске на колесах. Подрастет он чуть-чуть и садится на трехколесный велосипед, а потом и на двухколесный. Автомобиль ходит на колесах, трамвай движется на колесах, и самолет, опускаясь на землю, садится на четыре обутых в резину колеса.
Были трех и двух колесные велосипеды. Сколько было двух- и трехколесных велосипедов, если всего 8 велосипедов и 21 колесо?
Диаметр арены любого цирка 13 м. Чему равен радиус арены?
Вес самого маленького бриллианта на украшении «подвеска» составляет веса самого крупного бриллианта и равен 2 каратам. Сколько весит самый крупный бриллиант на этом украшении?
На поверхности глобуса фломастером проведены 17 параллелей и 24 меридиана. На сколько частей проведённые линии разделили поверхность глобуса? Меридиан — это дуга окружности, соединяющая Северный и Южный полюсы. Параллель — это окружность, лежащая в плоскости, параллельной плоскости экватора. Положение тела на поверхности земного шара определяется параллелями и меридианами. Параллель – это окружность.
С помощью кругов Эйлера решаются многие логические задачи. Например. Из 27 учеников класса 16 посещают математический кружок, 10 – к ружок по информатике, 8 – спортивный кружок. Кружки по информатике и м атематике посещают 7 учеников, по информатике и спортивный – 3, а математический и спортивный — 4 Все три кружка посещает 1 ученик. Сколько учеников посещают только математический кружок? 1 математика информатика спортивный 6 2 1 3 6 2
Спасательный круг имеет форму окружности.
В ходе своего исследования я узнала что круги и окружности довольно часто встречаются в нашей жизни. С помощью моего исследования можно повторить понятия круга и окружности , нахождение диаметра и радиуса окружности . Данную презентацию можно использовать для повторения материала при подготовке к ГИА в 9 классе.
📸 Видео
Длина окружности. Математика 6 класс.Скачать
7 класс, 21 урок, ОкружностьСкачать
Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать
Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать
Длина окружности. Площадь круга, 6 классСкачать
Математика 6 класс (Урок№76 - Длина окружности. Площадь круга.)Скачать
Математика 5 класс (Урок№26 - Окружность и круг. Сфера и шар.)Скачать
ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать
Окружность. Круг. 5 класс.Скачать
КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать
Длина окружности. Практическая часть - решение задачи. 6 класс.Скачать
КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 классСкачать
КАК НАЙТИ ПЛОЩАДЬ КРУГА, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать