Построение треугольника по точкам

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Построить проекции линии и точек на ней по заданным координатам. Начертательная геометрияСкачать

Построить проекции линии и точек на ней по заданным координатам. Начертательная геометрия

Geogebra — бесплатное он-лайн геометрическое приложение

Geogebra — наилучшее он-лайн геометрическое приложение для рисования геометрических фигур.
Подождите. Идёт загрузка (прим. 1-2 минуты).
Открыть в полный экран

Открыть в полный экран
Это он-лайн приложение позволяет рисовать геометрические фигуры — точки, линии, углы, треугольники, многоугольники, круги.
Вы можете создавать анимиционную геометрию и слайды.
Если Вам не нужна система координат по умолчанию, Вы можете скрыть ее.

Видео:Построение точек по координатамСкачать

Построение точек по координатам

Построение треугольника по трем элементам

Видео:Построение треугольника в трёх проекцияхСкачать

Построение треугольника в трёх проекциях

Задачи на построение

Широкое распространение в геометрии получили задачи на построение. Суть этих задач состоит в следующем: при заданных начальных условиях нужно построить тот или иной геометрический объект при помощи линейки и циркуля. Разберем общие принципы решения данных задач:

Анализирование задачи. На этом этапе необходимо установить взаимосвязь между заданными условиями и объектом, который нужно изобразить. Результатом выполнения этого этапа является план решения задачи.

Построение. Согласно разработанного плана выполняется построение объекта.

Доказательство. На этом этапе необходимо доказать, что изображенная фигура полностью соответствует заданным условиям.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Изучение. На этом этапе выполняется анализ начальных условий и определение, при каких условиях задача решается одним способом, при каких двумя, а при каких – вовсе не решаема.

Разберем задачи на построение треугольника по трем различным начальным условиям.

Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Изображение треугольника, если задана одна сторона и два прилегающих к ней угла

Задана одна сторон треугольника (BC) и прилежащие к ней углы (∝) и (β) , необходимо построить треугольник.

1. Анализируем условия. Необходимо построить треугольник (ABC) , имея одну сторону (BC) и углы (∠K= ∝ и ∠M= β) к ней прилежащие. Разработаем план решения задачи:

  • Начертим прямую a, а на ней отмерим отрезок (BC) ;
  • Изображаем угол (∠K= ∝) с центром в вершине (B) на стороне (BC) ;
  • Изображаем угол (∠M= β) с центром в вершине (C) на стороне (BC) ;
  • На пересечении лучей построенных углов получим точку (A) , соединяем ее с точками (C) и (B) , получаем отрезки (AC) и (AB) .

2. Строим треугольник

Построение треугольника по точкам

3. Доказательство. По изображенному рисунку делаем вывод, что все заданные условия выполнены в полной мере.

4. Изучение. Заданные углы могут быть построены и в противоположную сторону, соответственно мы можем построить еще один треугольник, но так как он точно такой же, как и первый, можно считать, что решение этой задачи единственное. Учитывая то, что сумма всех углов треугольника должна равняться 180 0 , если сумма углов (∝) и (β) будет равна или больше 180 0 , решения задача не будет иметь.

Видео:Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

Изображение треугольника, если заданы три стороны

Заданы три стороны треугольника (AB) , (AC) и (BC) , нужно построить треугольник.

1. Анализируем условия. Необходимо построить треугольник (ABC) , имея три стороны (AB) , (AC) и BC. Разработаем план решения задачи:

  • Начертим прямую (a) , а на ней отмерим отрезок (AB) ;
  • Чертим с помощью циркуля две окружности. Одна окружность будет с центром в точке (A) с радиусом (AC) , а вторая с центром в точке (B) с радиусом (BC) ;
  • На пересечении окружностей мы получим точку (C) , соединяем ее с точками (A) и (B) , получаем отрезки (AC) и (BC) .

2. Строим треугольник:

Построение треугольника по точкам

3. Доказательство. По изображенному рисунку делаем вывод, что все заданные условия выполнены в полной мере.

Не нашли что искали?

Просто напиши и мы поможем

4. Изучение. Построенные окружности имеют две точки пересечения, поэтому мы можем построить еще один треугольник, но так как он точно такой же, как и первый, можно считать, что решение этой задачи единственное. Учитывая то, что сумма двух сторон треугольника всегда больше, чем третья его сторона, можно сделать вывод, если это условие не будет выполнено для заданных сторон, то задача не будет иметь решение.

Видео:Построение треугольников по трем заданным точкам.Скачать

Построение треугольников по трем заданным точкам.

Изображение треугольника, если заданы две стороны и угол между ними

Заданы две стороны треугольника (AB) и (AC) , а также угол ∝ между ними, необходимо построить треугольник.

1. Анализируем условия. Необходимо построить треугольник (ABC) , имея стороны (AB) и (AC) , а также угол (CAB) , равный (∝) . Разработаем план решения задачи:

  • начертим прямую (a) , а на ней отмерим отрезок (AB) ;
  • отмеряем угол (MAB) , равный (∝) ;
  • откладываем отрезок (AC) на прямой (AM) ;
  • чертим третью сторону треугольника (CB) , соединяя точки (B) и (C) .

2. Строим треугольник:

Построение треугольника по точкам

3. Доказательство. По изображенному рисунку делаем вывод, что все заданные условия выполнены в полной мере.

4.Изучение. Прямая a бесконечна, поэтому таких треугольников можно изобразить очень много, но учитывая тот факт, что они все одинаковые, будем считать, что задача имеет одно решение. При условии, если угол (∝) будет равен или больше 180 0 , решения задача не будет иметь, так как сумма всех углов треугольника должна равняться 180 0 .

📽️ Видео

Частное положение точек. Точки принадлежащие к плоскостям проекции.Скачать

Частное положение точек. Точки принадлежащие к плоскостям проекции.

Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Как строить сеченияСкачать

Как строить сечения

Математика это не ИсламСкачать

Математика это не Ислам

Построение проекции пирамиды. Метод прямого треугольника.Скачать

Построение проекции пирамиды. Метод прямого треугольника.

Строим треугольник по трем сторонам (Задача 5).Скачать

Строим треугольник по трем сторонам (Задача 5).

Построение треугольника по трем сторонам. 7 класс.Скачать

Построение треугольника по трем сторонам. 7 класс.

Построение треугольника, равного данномуСкачать

Построение треугольника, равного данному

Построение окружности по трём точкам.Скачать

Построение окружности по трём точкам.

ЗАДАЧИ ПО ОСНОВАМ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. МЕТОДЫ ПРОЕЦИРОВАНИЯ И ЭПЮРЫ ТОЧЕК. №1Скачать

ЗАДАЧИ ПО ОСНОВАМ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. МЕТОДЫ ПРОЕЦИРОВАНИЯ И ЭПЮРЫ ТОЧЕК. №1

Геометрия - Построение правильного треугольникаСкачать

Геометрия - Построение правильного треугольника

Как строить сечения тетраэдра и пирамидыСкачать

Как строить сечения тетраэдра и пирамиды

Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости

Задание: ЭпюрСкачать

Задание: Эпюр
Поделиться или сохранить к себе: