Подобие треугольников вертикальные углы

Вертикальные углы. Свойства вертикальных углов

Определение 1. Вертикальными углами называются два угла, у которых стороны одного угла являются продолжениями сторон другого угла.

Подобие треугольников вертикальные углы

На Рис.1 углы AOB и COD вертикальные. Вертикальные также углы AOD и BOC.

Видео:Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать

Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой Репетитор

Свойства вертикальных углов

1. Вертикальные углы равны.

2. Две пересекающие прямые образуют две пары вертикальных углов.

Доказательство пункта 1. Поскольку 1, 3 и 2, 3 смежные углы, то имеем

Подобие треугольников вертикальные углы, Подобие треугольников вертикальные углы
Подобие треугольников вертикальные углы, Подобие треугольников вертикальные углы

Следовательно Подобие треугольников вертикальные углы. Аналогично доказывается, что Подобие треугольников вертикальные углы.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Задачи и решения

Задание 1. Угол 1 равен 32°. Найти углы 2, 3, 4 (Рис.2).

Подобие треугольников вертикальные углы

Решение. Так как углы 1 и 2 вертикальны, то Подобие треугольников вертикальные углы. Углы 1 и 4 смежные. Следовательно Подобие треугольников вертикальные углы. Тогда

Подобие треугольников вертикальные углыПодобие треугольников вертикальные углы.

Углы 3 и 4 вертикальные. Тогда Подобие треугольников вертикальные углы

Ответ. Подобие треугольников вертикальные углы.

Задание 2. При пересечении двух прямых образовались четыре угла. Сумма двух углов равна 220°. Найти все углы.

Решение. Из образованных четырех углов любые две или смежные, или вертикальные. Поскольку в нашей задаче сумма двух углов равна 220°, то эти углы вертикальные (так как сумма смежных углов равна 180°). Тогда каждый из этих углов равен 220°:2=110°. Смежный по отношению угла 110° , будет угол 180°-110°=70°. Следовательно остальные два угла равны 70°. Отметим, что сумма всех четырех углов равен 360°:

Подобие треугольников вертикальные углы.

Ответ. Подобие треугольников вертикальные углы.

Видео:Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать

Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | Математика

Вертикальные углы

Какие углы вертикальные? Каким свойством обладают вертикальные углы?

Рассмотрим определение вертикальных углов и их свойство, а также применим свойство вертикальных углов для решения задач.

Определение.

Вертикальные углы — это пары углов с общей вершиной, которые образованы при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого.

При пересечении двух прямых образуется две пары вертикальных углов:

Подобие треугольников вертикальные углы

∠1 и ∠2 — вертикальные углы

Подобие треугольников вертикальные углы

∠3 и ∠4 — вертикальные углы

Свойство вертикальных углов.

Вертикальные углы равны.

Подобие треугольников вертикальные углы

Подобие треугольников вертикальные углы

Таким образом, при пересечении двух прямых образуется две пары равных межу собой углов.

1) Сумма вертикальных углов равна 140º. Найти эти углы.

Так как вертикальные углы равны, а в условии сказано, что их сумма равна 140º, то каждый из них равен по 140:2=70º.

2) Сумма двух углов, образованных при пересечении двух прямых, равна 100º. Найти эти углы.

При пересечении двух прямых образуются углы двух видов — вертикальные и смежные.

Так как сумма смежных углов равна 180º, а по условию, сумма углов равна 100º, то эти углы — вертикальные.

А так как вертикальные углы равны, то каждый из них равен по 100:2=50º.

Вертикальные углы во многих задачах — важный элемент при доказательстве равенства треугольников и подобия треугольников.

Видео:Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать

Подобие треугольников (ч.2) | Математика | TutorOnline

Подобные треугольники

Видео:Геометрия 8 Подобие треугольников - теорияСкачать

Геометрия 8 Подобие треугольников - теория

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Подобие треугольников вертикальные углы

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Подобие треугольников вертикальные углы

Видео:SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Подобие треугольников вертикальные углы II признак подобия треугольников

Подобие треугольников вертикальные углы

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Подобие треугольников вертикальные углы

Видео:8 класс, 22 урок, Первый признак подобия треугольниковСкачать

8 класс, 22 урок, Первый признак подобия треугольников

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия. Подобие треугольников вертикальные углы
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

Подобие треугольников вертикальные углы

2. Треугольники Подобие треугольников вертикальные углыи Подобие треугольников вертикальные углы, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – Подобие треугольников вертикальные углы

Подобие треугольников вертикальные углы

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Подобие треугольников вертикальные углы

Подобие треугольников вертикальные углы

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

🎦 Видео

Задача на подобие треугольников 1частьСкачать

Задача на подобие треугольников 1часть

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Вертикальные углы. 7 класс.Скачать

Вертикальные углы. 7 класс.

8 класс, 23 урок, Второй признак подобия треугольниковСкачать

8 класс, 23 урок, Второй признак подобия треугольников

7 класс, 11 урок, Смежные и вертикальные углыСкачать

7 класс, 11 урок, Смежные и вертикальные углы

Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.Скачать

Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.

Первый признак подобия треугольников. Найти подобные по рисунку. Задачи на подобиеСкачать

Первый признак подобия треугольников. Найти подобные по рисунку. Задачи на подобие

Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Равенство Vs подобие треугольников. Вебинар | TutorOnlineСкачать

Равенство Vs подобие треугольников. Вебинар | TutorOnline

Подобные треугольники с нуля до ОГЭ | Математика ОГЭ 2023 | УмскулСкачать

Подобные треугольники с нуля до ОГЭ | Математика ОГЭ 2023 | Умскул

Геометрия . Задачи на подобие треугольников. Изи.Скачать

Геометрия . Задачи на подобие треугольников. Изи.

Как использовать подобие треугольников и правильно составить пропорцию. #математика #геометрия #углыСкачать

Как использовать подобие треугольников и правильно составить пропорцию. #математика #геометрия #углы
Поделиться или сохранить к себе: