В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить площадь сектора круга, а также разберем примеры решения задач для демонстрации их практического применения.
- Определение сектора круга
- Формулы нахождения площади сектора круга
- Через длину дуги и радиус круга
- Через угол сектора (в градусах) и радиус круга
- Через угол сектора (в радианах) и радиус круга
- Примеры задач
- Площадь закрашенного сектора окружности
- Площадь сектора круга — формулы и примеры расчетов
- Сектор круга
- Площадь сектора круга через радиус и длину дуги
- Примеры решения задач
- Задача №1
- Задача №2
- Площадь сектора круга через радиус и угол сектора
- Задача №3
- Площадь сектора круга через угол сектора в радианах
- Задача №4
- Сегмент круга
- Площадь сегмента круга по хорде и высоте
- Задача №5
- Площадь сегмента круга через синус угла
- 💥 Видео
Видео:Задача B3: площадь закрашенного сектораСкачать
Определение сектора круга
Сектор круга – это часть круга, образованная двумя его радиусами и дугой между ними. На рисунке ниже сектор закрашен зеленым цветом.
- AB – дуга сектора;
- R (или r) – радиус круга;
- α – это угол сектора, т.е. угол между двумя радиусами. Также его иногда называют центральным углом.
Видео:Площадь сектора и сегмента. 9 класс.Скачать
Формулы нахождения площади сектора круга
Через длину дуги и радиус круга
Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).
Через угол сектора (в градусах) и радиус круга
Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах ( α°) и деленной на 360°.
Через угол сектора (в радианах) и радиус круга
Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.
Видео:Найдите площадь закрашенной фигуры ★ 2 способа решения ★ Задание 3 ЕГЭ профильСкачать
Примеры задач
Задание 1
Дан круг радиусом 6 см. Найдите площадь сектора, если известно, что длина его дуги составляет 15 см.
Решение
Воспользуемся первой формулой, подставив в нее заданные значения:
Задание 2
Найдите угол сектора, если известно, что его площадь равна 78 см 2 , а радиус круга – 8 см.
Решение
Выведем формулу для нахождения центрального угла из второй формулы, рассмотренной выше:
Видео:САМОЕ БЫСТРОЕ И ПОНЯТНОЕ РЕШЕНИЕ. Найдите площадь закрашенного сектораСкачать
Площадь закрашенного сектора окружности
На клетчатой бумаге с размером клетки 1 × 1 изображён вписанный в окружность угол ABC. Найдите его градусную величину.
Аналоги к заданию № 27890: 26237 27891 509571 Все
На клетчатой бумаге с размером клетки изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.
Отрежем от закрашенной фигуры сектор, отмеченный синим цветом, и добавим к ней сектор, выделенный красным цветом. Указанные секторы равны, поэтому площадь фигуры не изменилась. Следовательно, она равна трём четвертям площади круга, радиус которого см. Поэтому
см 2 .
Хотелось бы более «научного» доказательства. Аргумент «это видно» не достаточен, так как всем видно разное. Спасибо!
На рисунке ВИДНО, что они равны. Или задайте прямые уравнениями и и найдите угол между ними. Но то, что уравнения именно такие, тоже ВИДНО по рисунку. Задания на работу с рисунками предполагают считывание информации с рисунка.
На клетчатой бумаге с размером клетки 1 1 изображён прямоугольный треугольник. Найдите радиус окружности, описанной около этого треугольника.
Треугольник прямоугольный, значит, радиус описанной вокруг него окружности равен половине гипотенузы.
Видео:ПЛОЩАДЬ СЕКТОРА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Площадь сектора круга — формулы и примеры расчетов
Выполняя инженерные расчёты при проектировании различных объектов строительства, создании роботов, автоматизированных систем, станков, машин, самолётов, ракет, современных средств вооружения часто бывает необходимо найти площадь сектора круга.
Геометрия помогает при этом решать задачи на нахождение центра тяжести (центр масс), вычислять его координаты для плоских пластин, имеющих, в частности, форму правильного многоугольника.
Измерять и вычислять величины считается базовым умением. Оно включено в первую часть профильной программы выпускного экзамена ЕГЭ и ОГЭ по математике.
Видео:Площадь сектораСкачать
Сектор круга
Существует несколько определений, каждое из которых отличается только формулировкой, не меняющей подход к рассмотрению понятия:
Часть плоскости, ограниченная центральным углом и соответствующей дугой окружности.
Часть круга, заключённая между двумя радиусами.
Часто эту формулировку заменяют похожей, описывающей построение непосредственно: часть круга, лежащего внутри соответствующего центрального угла.
Видео:Красивая геометрия ➜ Найдите площадь закрашенной части кругаСкачать
Площадь сектора круга через радиус и длину дуги
Пусть известны радиус круга R, длина дуги l. Как в этом случае определить площадь сектора, стягиваемого данной дугой?
Для ответа на вопрос понадобится формула нахождения длины окружности:
Определение, представленное через третью формулировку, даёт возможность соотнести численные величины понятий: сектор и круг, дуга и окружность, центральный и полный углы.
Поскольку отношения постоянны, то для ответа на поставленный вопрос достаточно найти отношение части к целому, затем умножить полученный результат на площадь круга S = πR 2 .
После сокращения дроби получают формулу:
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Примеры решения задач
Задача №1
Найти площадь сектора круга радиусом 2 см, имеющего длину дуги 4 см.
Подставляя имеющиеся величины в формулу, получаем:
Sсект = (4 * 2) / 2 = 4.
Ответ: Sсект = 4 см 2 .
Задача №2
Подставив известные данные в формулу, получим:
Тот же результат получился бы при первоначальной работе в «общем виде»:
Видео:Площадь круга. Математика 6 класс.Скачать
Площадь сектора круга через радиус и угол сектора
Если известна градусная мера центрального угла (n°), то, находя отношение её к полному кругу (к 360º), также умножают результат на площадь круга:
Задача №3
Чему равна площадь фигуры, изображённой на рисунке?
Центральный угол изображённого сектора равен
Подставляя в формулу величины, несложно получить искомый результат:
Ответ: Sсект = 27 см 2 .
Также аналогичным образом решаются обратные задачи.
Видео:ПОЧЕМУ НЕЛЬЗЯ ЗАХОДИТЬ В КРАСНЫЙ КВАДРАТ ЭТОГО ЖИТЕЛЯ В МАЙНКРАФТ | Компот MinecraftСкачать
Площадь сектора круга через угол сектора в радианах
Пусть центральный угол задан своей радианной мерой. Учитывая, что
несложно получить искомую формулу:
Задача №4
Чему равен центральный угол сектора в радианах (рад.), если его площадь равна 32, а радиус – 4?
Выразив α, затем подставив числовые данные, легко получить результат:
Благодаря этой формуле, несложно доказать, что площади двух секторов с равными центральными углами относятся как квадраты радиусов соответствующих окружностей:
С другой стороны, площадь части кольца находится из условия:
Видео:Криволинейная трапеция и ее площадь. 11 класс.Скачать
Сегмент круга
Существует два подхода к определению понятия:
Геометрическая фигура, являющаяся общей частью круга и полуплоскости, называется сегментом круга.
Часть плоскости, заключённая между хордой и окружностью.
Оба определения характеризуют один и тот же объект с разных сторон, выражая, по сути одно и то же.
Иногда проводится описательное построение. В этом случае второй вариант быстрее приводит к данному термину.
Видео:Найти площадь закрашенной части. Углы в окружности, теорема косинусов, секторСкачать
Площадь сегмента круга по хорде и высоте
Пусть градусная мера ограничивающей дуги мала, длина хорды равна a, h — высота сегмента (перпендикуляр, опущенный из точки на окружности к середине хорды). Примечание: часто высота сегмента называется «стрелкой».
Тогда можно приближённо считать, что
Погрешность такого вычисления уменьшается вместе с отношением
В частности, когда дуга содержит угол, меньший 50º, то есть,
погрешность оказывается менее 1%.
Более точной является формула для любого сегмента меньшего полукруга:
Точный расчёт производится, исходя из свойства нахождения сложной фигуры, являющейся суммой или разностью двух и более объектов.
Сегмент является частью сектора, к которому либо добавлен треугольник, содержащий центральный угол (для дуг больших 180º), либо убран (соответствующий центральный угол меньше 180º).
Отсюда следует, что
Задача №5
Вычислить стрелку и площадь сегмента, если центральный угол содержит 60º, а
Для нахождения стрелки достаточно из радиуса вычесть высоту треугольника AOB. Поскольку угол AOB по условию равен 60º, то треугольник AOB равносторонний. Поэтому его высота в √3/2 раз отличается от стороны (от радиуса).
Отсюда следует, что:
Площадь по первой формуле будет приблизительно равна
Применяя точную формулу и учитывая, что
Ответ: Sсегм = 1,26 см 2 .
Видео:Геометрия 9 класс (Урок№24 - Площадь круга. Площадь кругового сектора.)Скачать
Площадь сегмента круга через синус угла
Рассматривая точную формулу, площадь треугольника можно находить, используя половину произведения сторон на синус угла между ними. А значит:
Многие вычисления помогает провести онлайн калькулятор. Достаточно ввести исходные данные и запросить результат.
💥 Видео
ПЛОЩАДЬ СЕКТОРА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Масштаб. 6 класс.Скачать
Площадь сектора (ЕГЭ. Профиль. Задача 3)Скачать
Длина окружности. Площадь круга - математика 6 классСкачать
#15. Задание 3: вычисление элементов кругаСкачать
Найдите площадь закрашенной фигуры. Головоломка.Скачать
9 класс, 28 урок, Площадь кругового сектораСкачать