Планеты солнечной системы движутся по окружностям или эллипсам

Законы Кеплера

Астрономия конца XVI века отмечает столкновение двух моделей нашей Солнечной системы: геоцентрическая система Птолемея – где центром вращения всех объектов является Земля, и гелиоцентрическая система Коперника – где Солнце является центральным телом.

Планеты солнечной системы движутся по окружностям или эллипсам

И хотя Коперник был ближе к истинной природе Солнечной системы, его работа имела недостатки. Основным из этих недостатков являлось утверждение, что планеты вращаются вокруг Солнца по круговым орбитам. С учетом этого, модель Коперника практически настолько же не согласовывалась с наблюдениями, как и система Птолемея. Польский астроном стремился исправить данное расхождение при помощи дополнительного движения планеты по кругу, центр которого уже двигался вокруг Солнца — эпицикл. Однако, расхождения в большей своей части не были устранены.

Планеты солнечной системы движутся по окружностям или эллипсам

В начале XVII века немецкий астроном Иоганн Кеплер, изучая систему Николая Коперника, а также анализируя результаты астрономических наблюдений датчанина Тихо Браге, вывел основные законы относительно движения планет. Они были названы как Три закона Кеплера.

Будучи великолепным наблюдателем, Тихо Браге за много лет составил объёмный труд по наблюдению планет и сотен звёзд, причём точность его измерений была существенно выше, чем у всех предшественников.

Видео:Законы КеплераСкачать

Законы Кеплера

Первый закон Кеплера (закон эллипсов)

Планеты Солнечной системы движутся по эллиптическим орбитам. В одном из фокусов которой находится Солнце.

Планеты солнечной системы движутся по окружностям или эллипсам

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна.

После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Видео:Как Солнечная система движется по галактике?Скачать

Как Солнечная система движется по галактике?

Второй закон Кеплера (закон площадей)

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Планеты солнечной системы движутся по окружностям или эллипсам

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади. Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии – минимальную.

На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Видео:Как на самом деле движутся планеты Солнечной системы?Скачать

Как на самом деле движутся планеты Солнечной системы?

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.

Планеты солнечной системы движутся по окружностям или эллипсам

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь. Третий закон Кеплера выполняется как для планет, так и для спутников, с погрешно­стью не более 1 %.

На основании этого закона можно вычис­лить продолжительность года (время полного оборота вокруг Солнца) любой планеты, если известно её расстояние до Солнца. И наобо­рот — по этому же закону можно рассчитать орбиту, зная период обращения.

Видео:ДВИЖЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ ВОКРУГ ЦЕНТРА ГАЛАКТИКИ | THE SPACEWAYСкачать

ДВИЖЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ ВОКРУГ ЦЕНТРА ГАЛАКТИКИ | THE SPACEWAY

Дальнейшее развитие

И хотя законы Кеплера имели относительно невысокую погрешность, все же они были получены эмпирическим способом. Теоретическое же обоснование отсутствовало. Данная проблема позже была решена Исааком Ньютоном, который в 1682-м году открыл закон всемирного тяготения.

Законы Кеплера стали важнейшим этапом в понимании и описании движения планет.

Видео

Видео:Движение Солнечной системыСкачать

Движение Солнечной системы

Орбиты Солнечной системы и конфигурация планет

Сначала необходимо определиться, что такое орбиты и для чего они нужны.
Орбиты планет это их путь, или траектория движения. Подразумевается, что это перемещение в заранее определённой системе координат.
Всё тела в Солнечной системе вращаются по окружности Солнца. Это и есть заданная система координат. В свою очередь у каждого небесного тела разные орбиты. Как известно, они не движутся друг за другом. Более того,они отличаются по удлиненности и протяжению. Собственно, это влияет на климат и температуру поверхности тел.

Планеты солнечной системы движутся по окружностям или эллипсам Орбиты солнечной системы

Видео:Первый закон Кеплера. ЭллипсСкачать

Первый закон Кеплера.  Эллипс

Элементы орбиты

У каждой орбиты планет имеется свой набор параметров. К тому же, именно он задаёт её форму, размер и расположение в пространстве.
В астрономии принято использовать кеплеровы элементы орбиты. К ним относятся:

  • большая полуось — геометрическая характеристика объектов. Образуется коническим сечением, то есть пересечением плоскости с поверхности кругового конуса.
  • эксцентриситет — это параметр конического сечения, выраженный в числах. Он указывает его отклонение от окружности.
  • наклонение — угол между плоскость и орбитой.
  • аргумент перицентра — угол между направлениями из центра на восходящий узел орбиты. Сам перицентр определяют как ближнюю точку орбиты к притягивающему центру.
  • долгота восходящего узла — математическое описание линии плоскости орбиты в отношении к базовой плоскости.
  • средняя аномалия — это произведение среднего движения тела и интервала времени от перицентра. Имеет стабильную угловую скорость.

Видео:Почему наши планеты находятся в одной орбитальной плоскости?Скачать

Почему наши планеты находятся в одной орбитальной плоскости?

Орбиты планет Солнечной системы

Разумеется, центром нашей системы является Солнце. Собственно, в нём заключена основная масса всей системы. Своей силой тяготения оно притягивает небесные тела.

Планеты солнечной системы движутся по окружностям или эллипсам Солнце

Стоит отметить, значительное количество космических тел в Солнечной системе движутся приблизительно в одной области. Её называют эклиптикой. Другие объекты имеют больший угол наклона по отношению к ней.

Все планеты и многие другие тела вращаются вокруг Солнца против часовой стрелки. Кстати, сама центральная звезда почти все планеты движутся в этом же направлении. Только Венера и Уран имеют противоположное течение.
Чем больше удалена планета от Солнца, тем дальше расстояние между орбитами объектов.

Планеты солнечной системы движутся по окружностям или эллипсам Уран (слева) и Венера (справа)

С точки зрения астрономов, небесные тела направляются по эллипсу. Иначе говоря, они движутся по замкнутой кривой на плоскости. В одной из точек эллипса расположено Солнце. Чем ближе объект к нему, тем значительней угловая скорость вращения. Следовательно меньше период обращения. Проще говоря, короче год.

Видео:Почему ОРБИТЫ ПЛАНЕТ лежат в одной плоскости? [Эллиптические орбиты]Скачать

Почему ОРБИТЫ ПЛАНЕТ лежат в одной плоскости? [Эллиптические орбиты]

Планеты Солнечной системы

Между прочим, очень часто нашу систему делят на две зоны: внутреннюю и внешнюю.

К внутренней относятся пояс астероидов и планеты земной группы: Меркурий, Венера, Марс и, конечно, Земля.
Внешняя часть находится за первой группой. В её стостав входит четыре газовых гиганта.

Вдобавок, все объекты Солнечной системы разделены на три вида:

Международный астрономический союз утвердил состав системы Солнца. Всего установлено восемь планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун.

Планеты солнечной системы движутся по окружностям или эллипсам Планеты солнечной системы

Видео:Как выглядит Солнечная система на самом деле #космос #солнце #планетаСкачать

Как выглядит Солнечная система на самом деле #космос #солнце #планета

Конфигурация планет

Вероятно, вы задаёте вопрос: Что такое конфигурация планет и чем это интересно?
По крайней мере, в астрономии понятие конфигурации связывают с взаимным расположением Солнца, планет и других небесных тел. Более того, это относится непосредственно к Солнечной системе.
По характеру движения различают конфигурации нижних и верхних планет.

Конфигурация нижних планет

Наблюдаемое с Земли перемещение нижних планет, а точнее Меркурия и Венеры, сопровождается сменой фаз.
Движение этих планет осуществляется недалеко от Солнца. Их наибольшее отдаление от него совершается либо на восток, либо на запад от него. В зависимости от направления удаления различают восточную (вечернюю) элонгацию, и западную (утреннюю) элонгацию.

Элонгация определяется как угловое положение между Солнцем и планетой.

Движение нижних планет бывает попятным, то есть с востока на запад.
При этом момент, когда планета следует между Землёй и Солнцем, является нижним соединением.
Кроме того, движение может быть прямым, иначе говоря с запада на восток. И в момент, когда Солнце находится между Землёй и планетой, наблюдают верхнее соединение.

Конфигурация верхних планет

Конфигурация верхних планет похожа на нижние. По аналогии происходит прямое и попятное движение. Отличие заключается в меньшей скорости движения. В результате этого наступает момент, когда Солнце догоняет планету. Таким образом, они соединяются. Кроме того, в это время Солнце находится между Землёй и планетой.
Во время попятного движения планета оказывается в точке, которая прямо противоположна положению Солнца. Собственно говоря, такой момент называется противостоянием. Именно в этот период Земля расположена между Солнцем и планетой.

Положение планеты под углом 90° от Солнца в восточном направлении это восточная квадратура. Подобное положение к западной стороне, соответственно, называется западной квадратурой.

Видимое движение верхних планет происходит без смены фаз. Они повернуты к Земле освещённой стороной.
Кстати, движение Луны соответствует конфигурации верхних планет.
Разумеется, с Земли мы не можем наблюдать за перемещением верхних планет.

Видео:Законы Кеплера Анимированная презентация по физике 10 классСкачать

Законы Кеплера  Анимированная презентация по физике 10 класс

Периоды обращения планет

В астрономии принято два вида периодов обращения планет.
Сидерический период это обращение планеты вокруг Солнца. Другими словами время, а точнее год планеты определяемый земными сутками или годом.

Планеты солнечной системы движутся по окружностям или эллипсам Сидерический период

Синодический период это время обращения планеты в одну и ту же точку с позиции наблюдателя. К тому же наблюдатель должен находится на Земле.
Данный период более доступный для астрономов. Поэтому его вычислили раньше, чем сидерический.
К сожалению, есть некоторая сложность в определении синодического периода. Во-первых, Земля совершает оборот вокруг Солнца. Таким образом движение планет с Земли неточно и неравномерно. Во-вторых, не стоит забывать про попятное движение планет.

Орбиты планет это ещё одна уникальность Вселенной. Безусловно, их изучение и наблюдение завораживает. Столько всего удивительного происходит в космосе. Надо полагать, что впереди нас ждут ещё более увлекательные вещи.

Видео:Большое путешествие по планетам Солнечной системыСкачать

Большое путешествие по планетам Солнечной системы

Законы Кеплера

Планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце находится в одной из двух фокальных точек эллипса.

Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени.

Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д.* Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546–1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон** описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона, закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам — гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним — и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

* Между сферами Марса и Земли — додекаэдр (двенадцатигранник); между сферами Земли и Венеры — икосаэдр (двадцатигранник); между сферами Венеры и Меркурия — октаэдр (восьмигранник). Получившаяся конструкция была представлена Кеплером в разрезе на подробном объемном чертеже (см. рисунок) в его первой монографии «Космографическая тайна» (Mysteria Cosmographica, 1596). — Примечание переводчика.

** Исторически сложилось так, что законы Кеплера (подобно началам термодинамики) пронумерованы не по хронологии их открытия, а в порядке их осмысления в научных кругах. Реально же первый закон был открыт в 1605 году (опубликован в 1609 году), второй — в 1602 году (опубликован в 1609 году), третий — в 1618 году (опубликован в 1619 году). — Примечание переводчика.

🔥 Видео

Астрономия для детей. Планеты солнечной системыСкачать

Астрономия для детей. Планеты солнечной системы

Размеры планет. Сравнение планет солнечной системы.Скачать

Размеры планет. Сравнение планет солнечной системы.

Законы движения планет, или Вся правда о ретроградном МеркурииСкачать

Законы движения планет, или Вся правда о ретроградном Меркурии

9 класс урок №14 Законы движения планет Солнечной системыСкачать

9 класс урок №14  Законы движения планет Солнечной системы

Наклон и вращение планет Солнечной системыСкачать

Наклон и вращение планет Солнечной системы

Гайд по Солнечной Системе. Все, что нужно знать.Скачать

Гайд по Солнечной Системе. Все, что нужно знать.

Как и куда движется Солнечная система - Удивительное путешествие Планеты Земля.Скачать

Как и куда движется Солнечная система - Удивительное путешествие Планеты Земля.

Почему планеты вращаются? #почему #космос #whyСкачать

Почему планеты вращаются? #почему #космос #why

Что будет, если исчезнет планета из Солнечной СистемыСкачать

Что будет, если исчезнет планета из Солнечной Системы
Поделиться или сохранить к себе: