Периметры треугольников с координатами

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Периметр многоугольника по его координатам

Координаты многоугольника, разделенные пробелами в формате x+iy

В данной статье мы окажем помощь в расчете периметра многоугольника, заданного координатами его вершин. Несмотря на то, что сам принцип расчета прост, при большом количестве вершин, Вам придется делать несколько раз одни и те же вычисления, то есть выполнять рутинную операцию. А я страсть как не люблю рутину и Вам ей заниматься не советую.

Формула которая используется проста:

Если извеcтны две точки с координатами (x1,y1) и (x2,y2) то расстояние между ними

эту формулу необходиом применить к каждой паре координат соседних вершин многоугольника. И как только мы закончим обход и просуммировав все длины мы получим наш периметр.

Теперь что касается ввода данных. В предыдущем материале Площадь многоугольника по координатам онлайн ввод координат осуществляется через двоеточие и пробел, что не совсем удобно.

В этой статье, для упрощения и для обощения ( на комплексное представление) коодинаты будут задаватся в виде комплексных чисел.

Для тех кто с комплексными числами никогда не сталкивался, хочу успокоить — ничего страшного.

И если Вы координату раньше представляли как (x,y), то в комплексном представлении эта же координата видится уже как x+iy

Для ввода это немного проще, так как в дальнейшем при написании статьи про линейные преобразования фигуры на плоскости, это форма ввода нам пригодится, да и понимать ту статью Вам будет уже намного проще.

Теперь немного примеров:

Определим периметр многоугольника заданного координатами А (0; 0); В (8; 2); С (–2; 6).

Так как три вершины то это треугольник.

Введем данные в поле ввода( разделяя каждую координату вершины пробелом) в таком формате 0+0i 8+2i -2+6i

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Находим периметр треугольника различными способами

Периметр любого треугольника – это длина линии, ограничивающей фигуру. Чтобы его вычислить, нужно узнать сумму всех сторон этого многоугольника.

Видео:№941. Найдите периметр треугольника MNP, если М (4; 0), N(12; -2), В (5; -9).Скачать

№941. Найдите периметр треугольника MNP, если М (4; 0), N(12; -2), В (5; -9).

Вычисление по данным значениям длины сторон

Периметры треугольников с координатами

Когда известны их значения, то сделать это несложно. Обозначив эти параметры буквами m, n, k, а периметр буквой P, получим формулу для вычисления: P = m+n+k. Задание: Известно, что треугольник имеет стороны длиной 13,5 дециметров, 12,1 дециметров и 4,2 дециметра. Узнать периметр. Решаем: Если стороны данного многоугольника — a = 13,5 дм, b = 12,1 дм, c = 4,2 дм, то P = 29,8 дм. Ответ: P = 29,8 дм.

Видео:Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольникаСкачать

Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольника

Периметр треугольника, который имеет две равные стороны

Такой треугольник называется равнобедренным. Если эти равные стороны имеют длину a сантиметров, а третья сторона – b сантиметров, то периметр легко узнать: P =b+2a. Задание: треугольник имеет две стороны по 10 дециметров, основание 12 дециметров. Найти P. Решение: Пусть боковая сторона a = c = 10 дм, основание b = 12 дм. Сумма сторон P = 10 дм + 12 дм + 10 дм = 32 дм. Ответ: P = 32 дециметра.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Периметр равностороннего треугольника

Периметры треугольников с координатами

Если все три стороны треугольника имеют равное количество единиц измерения, он называется равносторонним. Еще одно название – правильный. Периметр правильного треугольника находят при помощи формулы: P = a+a+a = 3·a. Задача: Имеем равносторонний треугольный земельный участок. Одна сторона равна 6 метрам. Найти длину забора, которым можно обнести этот участок. Решение: Если сторона этого многоугольника a= 6м, то длина забора P = 3·6 = 18 (м). Ответ: P = 18 м.

Видео:Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

Треугольник, у которого есть угол 90°

Периметры треугольников с координатами

Его называют прямоугольным. Наличие прямого угла дает возможность находить неизвестные стороны, пользуясь определением тригонометрических функций и теоремой Пифагора. Самая длинная сторона называется гипотенуза и обозначается c. Имеются еще две стороны, a и b. Следуя теореме, носящей имя Пифагора, имеем c 2 = a 2 + b 2 . Катеты a = √ (c 2 – b 2 ) и b = √ (c 2 – а 2 ). Зная длину двух катетов a и b, вычисляем гипотенузу. Затем находим сумму сторон фигуры, сложив эти значения. Задание: Катеты прямоугольного треугольника имеют длину 8,3 сантиметра и 6,2 сантиметра. Периметр треугольника нужно вычислить. Решаем: Обозначим катеты a = 8,3 см, b = 6,2 см. За теоремой Пифагора гипотенуза c = √ (8,3 2 + 6,2 2 ) = √ (68,89 + 38,44) = √107,33 = 10,4 (см). P = 24,9 (см). Или P = 8,3 + 6,2 + √ (8,3 2 + 6,2 2 ) = 24,9 (см). Ответ: P = 24,9 см. Значения корней брали с точностью до десятых. Если нам известны значения гипотенузы и катета, то значение Р получим, вычислив Р=√ (c 2 – b 2 ) + b + c. Задача 2: Отрезок земельного участка, лежащий против угла в 90 градусов, 12 км, один из катетов – 8 км. За какое время можно обойти весь участок, если двигаться со скоростью 4 километра в час? Решение: если наибольший отрезок — 12 км, меньший b = 8 км, то длина всего пути составит P = 8 + 12 + √ (12 2 – 8 2 ) = 20 + √80 = 20 + 8,9 = 28,9 (км). Время найдем, разделив путь на скорость. 28,9:4 = 7,225 (ч). Ответ: можно обойти за 7,3 ч. Значение квадратных корней и ответа берем с точностью до десятых. Можно найти сумму сторон прямоугольного треугольника, если дана одна из сторон и значение одного из острых углов. Зная длину катета b и значение противолежащего ему угла β, найдем неизвестную сторону a = b/ tg β. Находим гипотенузу c = a: sinα. Периметр такой фигуры находим, сложив полученные значения. P = a + a/ sinα + a/ tg α, или P = a(1 / sin α+ 1+1 / tg α). Задание: В прямоугольном Δ АВС с прямым углом С катет ВС имеет длину 10 м, угол А – 29 градусов. Нужно найти сумму сторон Δ АВС. Решение: Обозначим известный катет ВС = a = 10 м, угол, лежащий напротив него, ∟А = α = 30°, тогда катет АС = b = 10: 0,58 = 17,2 (м), гипотенуза АВ = c = 10: 0,5 = 20 (м). Р = 10 + 17,2 + 20 = 47,2 (м). Или Р = 10 · (1 + 1,72 + 2) = 47,2 м. Имеем: P = 47,2 м. Значение тригонометрических функций берем с точностью до сотых, значение длины сторон и периметра округляем до десятых. Имея значение катета α и прилежащего угла β, узнаем, чему равен второй катет: b = a tg β. Гипотенуза в таком случае будет равна катету, разделенному на косинус угла β. Периметр узнаем по формуле P = a + a tg β + a: cos β = (tg β + 1+1: cos β)·a. Задание: Катет треугольника с углом 90 градусов 18 см, прилежащий угол – 40 градусов. Найти P. Решение: Обозначим известный катет ВС = 18 см, ∟β = 40°. Тогда неизвестный катет АС = b = 18 · 0,83 = 14,9 (см), гипотенуза АВ = c = 18: 0,77 = 23,4 (см). Сумма сторон фигуры равна Р = 56,3 (см). Или Р = (1 + 1,3+0,83)*18 = 56,3 см. Ответ: P = 56,3 см. Если известна длина гипотенузы c и какой-нибудь угол α, то катеты будут равны произведению гипотенузы для первого – на синус и для второго – на косинус этого угла. Периметр этой фигуры P = (sin α + 1+ cos α)*c. Задание: Гипотенуза прямоугольного треугольника АВ = 9,1 сантиметр, а угол 50 градусов. Найти сумму сторон данной фигуры. Решение: Обозначим гипотенузу: AB = c = 9,1 см, ∟A= α = 50°, тогда один из катетов BC имеет длину a = 9,1 · 0,77 = 7 (см), катет АС = b = 9,1 · 0,64 = 5,8 (см). Значит периметр этого многоугольника равен P = 9,1 + 7 + 5,8 = 21,9 (см). Или P = 9,1·(1 + 0,77 + 0,64) = 21,9 (см). Ответ: P = 21,9 сантиметров.

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Произвольный треугольник, одна из сторон которого неизвестна

Периметры треугольников с координатами

Если мы имеем значения двух сторон a и c, и угла между этими сторонами γ, третью находим теоремой косинусов: b 2 = с 2 + a 2 – 2 ас cos β, где β – угол, лежащий между сторонами а и с. Затем находим периметр. Задание: Δ АВС имеет отрезок АВ длиной 15 дм, отрезок АС, длина которго 30,5 дм. Значение угла между этими сторонами 35 градусов. Вычислить сумму сторон Δ АВС. Решение: Теоремой косинусов вычислим длину третей стороны. BC 2 = 30,5 2 + 15 2 — 2·30,5·15·0,82 = 930,25 + 225 – 750,3 = 404,95. BC = 20,1 см. P = 30,5 + 15 + 20,1 = 65,6 (дм).Имеем: P = 65,6 дм.

Видео:Как найти площадь треугольника, зная координаты его вершины.Скачать

Как найти площадь треугольника, зная координаты его вершины.

Сумма сторон произвольного треугольника, у которого длины двух сторон неизвестны

Периметры треугольников с координатами

Когда знаем длину только одного отрезка и значение двух углов, можно узнать длину двух неизвестных сторон, пользуясь теоремой синусов: «в треугольнике стороны всегда пропорциональны значениям синусов противоположных углов». Откуда b = (a* sin β)/ sin a. Аналогично c = (a sin γ): sin a. Периметр в таком случае будет P = а + (а sin β)/ sin a + (a sin γ)/ sin a. Задание: Имеем Δ ABC. В нем длина стороны BC 8,5 мм, значение угла C – 47°, а угла B – 35 градусов. Найти сумму сторон данной фигуры. Решение: Обозначим длины сторон BC = a = 8,5 мм, AC = b, AB = c, ∟ A = α= 47°, ∟B = β = 35°, ∟ C = γ = 180° – (47° + 35°) = 180° – 82° = 98°. Из соотношений, полученных из теоремы синусов, находим катеты AC = b = (8,5·0,57): 0,73= 6,7 (мм), AB = c = (7 · 0,99): 0,73 = 9,5 (мм). Отсюда сумма сторон этого многоугольника равна P = 8,5 мм + 5,5 мм + 9,5 мм = 23,5 мм. Ответ: P = 23,5 мм. В случае, когда есть только длина одного отрезка и значения двух прилежащих углов, сначала вычисляем угол, противоположный известной стороне. Все углы этой фигуры в сумме имеют 180 градусов. Поэтому ∟A = 180° — (∟B + ∟C). Дальше находим неизвестные отрезки, используя теорему синусов. Задание: Имеем Δ ABC. Он имеет отрезок BC, равный 10 см. Значение угла B равно 48 градусов, угол C равен 56 градусов. Найти сумму сторон Δ ABC. Решение: Сначала найдем значение угла A, противолежащего стороне BC. ∟A = 180° – (48° + 56°) = 76°. Теперь с теоремой синусов вычислим длину стороны AC = 10·0,74: 0,97 = 7,6 (см). AB = BC* sin C/ sin A = 8,6. Периметр треугольника Р = 10 + 8,6 + 7,6 = 26,2 (см). Результат: P = 26,2 см.

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Вычисление периметра треугольника с использованием радиуса окружности, вписанной в него

Периметры треугольников с координатами

Иногда из условия задачи не известна ни одна сторона. Зато есть значение площади треугольника и радиуса окружности, вписанной в него. Эти величины связаны: S = r p. Зная значение площади треугольника, радиуса r, можем найти полупериметр p. Находим p = S: r. Задача: Участок имеет площадь 24 м 2 , радиус r равен 3 м. Найти количество деревьев, которое нужно высадить равномерно по линии, ограждающей этот участок, если между двумя соседними должно быть расстояние 2 метра. Решение: Сумму сторон данной фигуры находим так: P = 2 · 24: 3 = 16 (м). Затем делим на два. 16:2= 8. Итого: 8 деревьев.

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Сумма сторон треугольника в декартовых координатах

Вершины Δ АВС имеют координаты: A (x1; y1), B (x2; y2), C(x3 ; y3). Найдем квадраты каждой из сторон AB 2 = (x1 — x2) 2 + (y1 — y2) 2 ; ВС 2 = (x2 — x3) 2 + (y2 — y3) 2 ; АС 2 = (x1 — x3) 2 + (y1 — y3) 2 . Чтобы найти периметр, достаточно сложить все отрезки. Задание: Координаты вершин Δ ABC: B (3; 0), A (1; -3), C (2; 5). Найти сумму сторон этой фигуры. Решение: поставив значения соответствующих координат в формулу периметра, получим P = √(4 + 9) + √(1 + 25) + √(1 + 64) = √13 + √26 + √65 = 3,6 + 5,1 + 8,0 = 16,6. Имеем: P = 16,6. Если фигура находится не на плоскости, а в пространстве, то каждая из вершин имеет три координаты. Поэтому формула суммы сторон будет иметь еще одно слагаемое.

Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать

8 класс, 21 урок, Отношение площадей подобных треугольников

Векторный метод

Если фигура задана координатами вершин, периметр можно вычислить, используя векторный метод. Вектор – отрезок, имеющий направление. Его модуль (длина) обозначается символом ǀᾱǀ. Расстояние между точками – это и есть длина соответствующего вектора, или модуль вектора. Рассмотрим треугольник, лежащий на плоскости. Если вершины имеют координаты А (х1; у1), М(х2; у2), Т (х3; у3), то длину каждой из сторон находим по формулам: ǀАМǀ = √ ((х1 – х2) 2 + (у1 – у2) 2 ), ǀМТǀ = √ ((х2 – х3) 2 + (у2 – у3) 2 ), ǀАТǀ = √ ((х1 – х3) 2 + (у1 – у3) 2 ). Периметр треугольника получим, сложив длины векторов. Аналогично находят сумму сторон треугольника в пространстве.

💡 Видео

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Задачи на периметр труегольника. Геометрия 7 класс. Две задачи.Скачать

Задачи на периметр труегольника. Геометрия 7 класс. Две задачи.

Хитрый периметрСкачать

Хитрый периметр

Видеоурок "Координатная плоскость, координата точки"Скачать

Видеоурок "Координатная плоскость, координата точки"

Задача, которую исключили из экзамена в АмерикеСкачать

Задача, которую исключили из экзамена в Америке

Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции
Поделиться или сохранить к себе:
Вы ввели следующие координаты многоугольника
Периметр многоугольника (в условных единицах)