Пересечение высот в правильном треугольнике

Свойства высоты равностороннего треугольника

В данной публикации мы рассмотрим основные свойства высоты в равностороннем (правильном) треугольнике. Также разберем пример решения задачи по этой теме.

Примечание: треугольник называется равносторонним, если все его стороны равны.

Видео:Геометрия 8 класс (Урок№31 - Теорема о пересечении высот треугольника.)Скачать

Геометрия 8 класс (Урок№31 - Теорема о пересечении высот треугольника.)

Свойства высоты в равностороннем треугольнике

Свойство 1

Любая высота в равностороннем треугольнике одновременно является и биссектрисой, и медианой, и серединным перпендикуляром.

Пересечение высот в правильном треугольнике

  • BD – высота, опущенная на сторону AC;
  • BD – медиана, которая делит сторону AC пополам, т.е. AD = DC;
  • BD – биссектриса угла ABC, т.е. ∠ABD = ∠CBD;
  • BD – серединный перпендикуляр, проведенный к AC.

Свойство 2

Все три высоты в равностороннем треугольнике имеют одинаковую длину.

Пересечение высот в правильном треугольнике

Свойство 3

Высоты в равностороннем треугольнике в ортоцентре (точке пересечения) делятся в отношении 2:1, считая от вершины, из которой они проведены.

Пересечение высот в правильном треугольнике

Свойство 4

Ортоцентр равностороннего треугольника является центром вписанной и описанной окружностей.

Пересечение высот в правильном треугольнике

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r (следует из Свойства 3).

Свойство 5

Высота в равностороннем треугольнике делит его на два равных по площади (равновеликих) прямоугольных треугольника.

Пересечение высот в правильном треугольнике

Три высоты в равностороннем треугольнике делят его на 6 равных по площади прямоугольных треугольников.

Свойство 6

Зная длину стороны равностороннего треугольника его высоту можно вычислить по формуле:

Пересечение высот в правильном треугольнике

a – сторона треугольника.

Видео:8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

Пример задачи

Радиус окружности, описанной вокруг равностороннего треугольника, равняется 7 см. Найдите сторону этого треугольника.

Решение
Как мы знаем из Свойств 3 и 4, радиус описанной окружности составляет 2/3 от высоты равностороннего треугольника (h). Следовательно, h = 7 ∶ 2 ⋅ 3 = 10,5 см.

Теперь остается вычислить длину стороны треугольника (выражение выведено из формулы в Свойстве 6):

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Точка пересечения высот треугольника — свойства, координаты и расположение ортоцентра

Пересечение высот в правильном треугольнике

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Что такое высота

Пересечение высот в правильном треугольнике

Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.

У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе. Прямая попадет только на продолжение противоположной стороны и будет находиться вне самой фигуры. Таким образом, если все углы острые, отрезки будут находиться внутри, как и ортоцентр. В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.

Видео:Теорема о пересечении высот треугольникаСкачать

Теорема о пересечении высот треугольника

Свойства ортоцентра

Свойства высот треугольника, пересекающихся в одной точке, давно изучены и описаны. Согласно основному из них, все 3 высоты всегда пересекаются в одном месте. Иногда, чтобы найти это место, отрезки нужно продлить, превратив в ортогональные прямые.

Ортоцентр по отношению к фигуре может быть расположен:

  • внутри;
  • снаружи;
  • в вершине (у прямоугольных треугольников)

Ортоцентр — важная в геометрии характеристика, влияющая на нахождение золотого сечения.

Пересечение высот в правильном треугольнике

Так называется маленький треугольник, расположенный внутри основного, находящийся на пересечении его трех параметров:

Золотое сечение может представлять собой не только треугольную фигуру, но и отрезок. В правильном треугольнике медианы, биссектрисы и высоты совпадают, значит, золотое сечение превращается в точку.

Полезные факты

Местонахождение ортоцентра имеет некоторые закономерности. Их знание принесет пользу при решении задач.

Пусть:

  • H — ортоцентр в ABC;
  • О — центр описанной окружности.

Тогда:

  • окружности, описанные вокруг АБС, АНВ, CHB, HCA, равны:
  • отрезок BH вдвое длиннее отрезка АС;
  • середины отрезков AC и BH разделены расстоянием, равным радиусу описанной окружности.

Задача Фаньяно

Это классическая теорема. Она возникла в процессе поиска фигур с наименьшим периметром. Теорему доказал Фаньяно — итальянский математик и инженер. Это произошло еще в начале XVIII века.

Формулировка: ортотреугольник, то есть фигура, полученная соединением трех оснований треугольника, проведенный внутри остроугольного треугольника, имеет самый маленький периметр изо всех возможных, вписанных в данную фигуру.

Площадь ортотреугольника рассчитывается по формуле:

Пересечение высот в правильном треугольнике

Здесь S — площадь, а, b, c — стороны.

Существует понятие ортоцентрической системы. Оно включает в себя 3 вершины и место пересечения их высот. Любая из данных четырех точек будет являться ортоцентром треугольника, образованного тремя остальными.

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

История изучения

Важное значение имеет место пересечения медиан или центр тяжести. Вместе с ортоцентром это еще одна «замечательная точка», которая была известна еще древним грекам. Так их стали называть начиная с 18 века, другое название «особенные».

Пересечение высот в правильном треугольнике

Исследование этих точек стало началом для создания геометрии треугольника, основателем которой считается Леонард Эйлер. Ученый показал, что в любом треугольнике точки соединения высот, медиан и центр описанного круга находятся на одной линии, которую позже назвали прямой Эйлера.

В позапрошлом веке была обнаружена окружность 9 точек или Фейербаха. Она состоит из оснований медиан, высот и центров высот. Оказалось, что все эти точки лежат на общей окружности, центр которой находится на линии Эйлера.

Каждый отрезок, прочерченный из ортоцентра до соединения с описанной окружностью, всегда будет делиться линией Эйлера на 2 равные части.

Треугольник — удивительная фигура, изучением которой занимается целый раздел геометрии. Ортоцентр и его свойства имеют широкое применение в практической жизни, например, в строительстве. Этот показатель настолько важен и распространен, что существуют калькуляторы, позволяющие определить местонахождение точки по координатам вершин.

Видео:2050 высота правильного треугольника равна 90 найдите радиус окружностиСкачать

2050 высота правильного треугольника равна 90 найдите радиус окружности

Свойства равностороннего треугольника

Основные свойства равностороннего треугольника непосредственно следуют из свойств равнобедренного треугольника, частным случаем которого он является.

Свойства равностороннего треугольника

Пересечение высот в правильном треугольнике

Пересечение высот в правильном треугольнике2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают:

AK — высота, медиана и биссектриса, проведённые к стороне BC;

BF — высота, медиана и биссектриса, проведённые к стороне AC;

CD — высота, медиана и биссектриса, проведённые к стороне AB.

Длины всех трёх высот (медиан, биссектрис) равны между собой:

Если a — сторона треугольника, то

Пересечение высот в правильном треугольнике

3) Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).

4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин:

Пересечение высот в правильном треугольнике

5) Расстояние от точки пересечения высот, биссектрис и медиан

до любой вершины треугольника равно радиусу описанной окружности:

Пересечение высот в правильном треугольнике

Пересечение высот в правильном треугольнике

Пересечение высот в правильном треугольнике

6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности:

Пересечение высот в правильном треугольнике

Пересечение высот в правильном треугольнике

7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе: R+r=BF.

8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности:

🎬 Видео

Точка пересечения высот треугольника.Скачать

Точка пересечения высот треугольника.

✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис ТрушинСкачать

✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис Трушин

76. Теорема о пересечении высот треугольникаСкачать

76. Теорема о пересечении высот треугольника

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Высоты треугольника.Скачать

Высоты треугольника.

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника
Поделиться или сохранить к себе: