Пересечение плоскостей заданных треугольниками

Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
Определить натуральную величину треугольника ABC.

1. Строим проекции треугольника АВС.

Пересечение плоскостей заданных треугольниками

2. Строим проекции треугольника EDK.

Пересечение плоскостей заданных треугольниками

3. Находим точку пересечения стороны АС с треугольником EDK

Пересечение плоскостей заданных треугольниками

4. Находим точку пересечения стороны А B с треугольником EDK и строим линию пересечения MN

Пересечение плоскостей заданных треугольниками

5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.

Пересечение плоскостей заданных треугольниками

6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.

Пересечение плоскостей заданных треугольниками

7. В треугольнике ABC проводим горизонталь CL и плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.

Строим фронтальную проекцию треугольника ABC . Треугольник должен проецироваться в прямую линию.

Пересечение плоскостей заданных треугольниками

8. Определяем действительную величину треугольника ABC и строим на нем линию пересечения MN.

Видео:Линия пересечения плоскостейСкачать

Линия пересечения плоскостей

Пересечение плоскостей заданных треугольниками

Пересечение плоскостей заданных треугольниками

Пересечение плоскостей заданных треугольниками

Пересечение плоскостей заданных треугольниками Пересечение плоскостей заданных треугольниками

Видео:Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Пошаговое руководство решения задачи №1 — «Нахождение линии пересечения двух плоскостей и определение натуральной величины»

В задаче необходимо найти линию пересечения двух плоскостей и определить натуральную величину одной из них методом плоскопараллельного перемещения.

Для решения такой классической задачи по начертательной геометрии необходимо знать следующий теоретический материал:

— нанесение проекций точек пространства на комплексный чертеж по заданным координатам;

— способы задания плоскости на комплексном чертеже, плоскости общего и частного положения;

— главные линии плоскости;

— определение точки пересечения прямой линии с плоскостью (нахождение «точки встречи»);

— метод плоскопараллельного перемещения для определения натуральной величины плоской фигуры;

— определение видимости на чертеже прямых линий и плоскостей с помощью конкурирующих точек.

Порядок решения Задачи

1. Согласно варианту Задания по координатам точек наносим на комплексный чертеж две плоскости, заданные в виде треугольников ABC (A’, B’, C’; A, B, C) и DKE (D’, K’, E’; D, K, Е) (рис.1.1).

Пересечение плоскостей заданных треугольниками

Рис.1.1

2. Для нахождения линии пересечения воспользуемся методом проецирующей плоскости. Суть его в том, что берется одна сторона (линия) первой плоскости (треугольника) и заключается в проецирующую плоскость. Определяется точка пересечения этой линии с плоскостью второго треугольника. Повторив эту задачу еще раз, но для прямой второго треугольника и плоскости первого треугольника, определим вторую точку пересечения. Так как полученные точки одновременно принадлежат обеим плоскостям, они должны находиться на линии пересечения этих плоскостей. Соединив эти точки прямой, будем иметь искомую линию пересечения плоскостей.

3. Задача решается следующим образом:

а) заключаем в проецирующую плоскость Ф(Ф’) сторону AB(AB’) первого треугольника во фронтальной плоскости проекций V. Отмечаем точки пересечения проецирующей плоскости со сторонами DK и DE второго треугольника, получая точки 1(1’) и 2 (2’). Переносим их по линиям связи на горизонтальную плоскость проекций H на соответствующие стороны треугольника, точка 1(1) на стороне DE и точка 2(2) на стороне DK.

Пересечение плоскостей заданных треугольниками

Рис.1.2

б) соединив проекции точек 1 и 2, будем иметь проекцию проецирующей плоскости Ф. Тогда точка пересечения прямой АВ с плоскостью треугольника DKE определится (согласно правилу) вместе пересечения проекции проецирующей плоскости 1-2 и одноименной проекции прямой AB. Таким образом, получили горизонтальную проекцию первой точки пересечения плоскостей – M, по которой определяем (проецируем по линиям связи) её фронтальную проекцию – M на прямой AB(рис.1.2.а);

в) аналогичным путем находим вторую точку. Заключаем в проецирующую плоскость Г(Г) сторону второго треугольника DK(DK). Отмечаем точки пересечения проецирующей плоскости со сторонами первого треугольника AC и BC во горизонтальной проекции, получая проекции точек 3 и 4. Проецируем их на соответствующие стороны в фронтальной плоскости, получаем 3’ и 4’. Соединив их прямой, имеем проекцию проецирующей плоскости. Тогда вторая точка пересечения плоскостей будет в месте пересечения линии 3’-4’ со стороной треугольника DK, которую заключали в проецирующую плоскость. Таким образом, получили фронтальную проекцию второй точки пересечения – N, по линии связи находим горизонтальную проекцию – N (рис.1.2.б).

г) соединив полученные точки MN(MN) и (MN’) на горизонтальной и фронтальной плоскостях, имеем искомую линию пересечения заданных плоскостей.

4. С помощью конкурирующих точек определяем видимость плоскостей. Возьмем пару конкурирующих точек, например, 1’=5’ во фронтальной проекции. Спроецируем их на соответствующие стороны в горизонтальную плоскость, получим 1 и 5. Видим, что точка 1, лежащая на стороне DЕ имеет большую координату до оси x, чем точка 5, лежащая на стороне AВ. Следовательно, согласно правилу, большей координаты, точка 1 и сторона треугольника D’Е’ во фронтальной плоскости будут видимые. Таким образом, определяется видимость каждой стороны треугольника в горизонтальной и фронтальной плоскостях. Видимые линии на чертежах проводятся сплошной контурной линией, а не видимые — штриховой линией. Напомним, что в точках пересечения плоскостей (MN и M’-N) будет происходить смена видимости.

Пересечение плоскостей заданных треугольниками

Рис.1.3

Пересечение плоскостей заданных треугольниками

Рис.1.4.

На эпюре дополнительно показано определение видимости в горизонтальной плоскости с использованием конкурирующих точек 3 и 6 на прямых DK и АВ.

5. Методом плоскопараллельного перемещения определяем натуральную величину плоскости треугольника ABC, для чего:

а) в указанной плоскости через точку С(С) проводим фронталь CF (С-F и C’-F’);

б) на свободном поле чертежа во горизонтальной проекции берем (отмечаем) произвольную точку С1, считая, что это одна из вершин треугольника (конкретно вершина C). Из нее восстанавливаем перпендикуляр к фронтальной плоскости (через ось х);

Пересечение плоскостей заданных треугольниками

Рис.1.5

в) плоскопараллельным перемещением переводим горизонтальную проекцию треугольника ABC, в новое положение A1B1C1 таким образом, чтобы в фронтальной проекции он занял проецирующее положение (преобразовался в прямую линию). Для этого: на перпендикуляре от точки С1, откладываем фронтальную проекцию горизонтали C1F1 (длина lCF) получаем точку F1. Раствором циркуля из точки F1 величиною F-A делаем дуговую засечку, а из точки C1 — засечку величиной CA, тогда в пересечении дуговых линий получаем точку A1 (вторая вершина треугольника);

— аналогично получаем точку B1 (из точки C1 делаем засечку величиной CB (57мм), а из точки F1 величиной FB (90мм).Заметим, что при правильном решении три точки A1 F1 и B1 должны лежать на одной прямой (сторона треугольника A1B1)две другие стороны С1A1 и C1B1 получаются путем соединения их вершин;

г) из метода вращения следует, что при перемещении или вращении точки в какой-то плоскости проекций — на сопряженной плоскости проекция этой точки должна двигаться по прямой линии, в нашем конкретном случае по прямой параллельной оси х. Тогда проводим из точек ABC фронтальной проекции эти прямые (их называют плоскостями вращения точек), а из фронтальных проекций перемещенных точек A1 В1 C1 восстановим перпендикуляры (линии связи) (рис.1.6).

Пересечение плоскостей заданных треугольниками

Рис.1.6

Пересечения указанных линий с соответствующими перпендикулярами дает новые положения фронтальной проекции треугольника ABC, конкретно A1В’1C1 который должен стать проецирующим (прямой линией), поскольку горизонталь h1 мы провели перпендикулярно фронтальной плоскости проекций (рис.1.6);

5) тогда для получения натуральной величины треугольника достаточно его фронтальную проекцию развернуть до параллельности с горизонтальной плоскостью. Разворот осуществляем с помощью циркуля через точку А’1, считая ее как центр вращения, ставим треугольник A1В’1C1 параллельно оси х, получаем A2В’2C2. Как было сказано выше, при вращении точки, на сопряженной (теперь на горизонтальной) проекции они двигаются по прямым параллельным оси х. Опуская перпендикуляры (линии связи) из фронтальных проекций точек A2 В’2 C2 пересечения их с соответствующими линиями находим горизонтальную проекцию треугольника ABC (A2В2C2) в натуральную величину (рис.1.7).

Пересечение плоскостей заданных треугольниками

Рис. 1.7

У меня есть все готовые решения задач с такими координатами, купить можно >>здесь

Пересечение плоскостей заданных треугольниками

Цена 55 руб, чертежи по начертательной геометрии из книжки Фролова Вы легко можете скачать сразу после оплаты или я вышлю Вам на почту. Они находятся в ZIP архиве в различных форматах:
*.jpgобычный цветной рисунок чертежа в масштабе 1 к 1 в хорошем разрешении 300 dpi;
*.cdwформат программы Компас 12 и выше или версии LT;
*.dwg и .dxfформат программы AUTOCAD, nanoCAD;

Видео:[Начертательная геометрия 1 курс] Пересечение двух плоскостей заданных треугольникамиСкачать

[Начертательная геометрия 1 курс] Пересечение двух плоскостей заданных треугольниками

Построение линии пересечения плоскостей, заданных различными способами

Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.

Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L1 и L2, принадлежащих линии пересечения.

Пересечение плоскостей заданных треугольниками

  1. Вводим вспомогательную горизонтальную плоскость γ1. Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1»C» и 2»3», совпадают с фронтальным следом пл. γ1. Он обозначен на рисунке как f0γ1 и расположен параллельно оси x.
  2. Определяем горизонтальные проекции 1’C’ и 2’3′ по линиям связи.
  3. Находим горизонтальную проекцию точки L1 на пересечении прямых 1’C’ и 2’3′. Фронтальная проекция точки L1 лежит на фронтальном следе плоскости γ.
  4. Вводим вспомогательную горизонтальную плоскость γ2. С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L2.
  5. Через L1 и L2 проводим искомую прямую l.

Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.

Видео:Линия пересечения плоскостей, заданных треугольником и четырёхугольникомСкачать

Линия пересечения плоскостей, заданных треугольником и четырёхугольником

Пересечение плоскостей, заданных следами

Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П1 и П2.

Пересечение плоскостей заданных треугольниками

  1. Находим точку L’1, расположенную на пересечении горизонтальных следов h0α и h0β. Точка L»1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L’1.
  2. Находим точку L»2 на пересечении фронтальных следов пл. α и β. Точка L’2 лежит на оси x. Её положение определяется по линии связи, проведенной из L»2.
  3. Проводим прямые l’ и l» через соответствующие проекции точек L1 и L2, как это показано на рисунке.

Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.

Видео:Нахождение пересечения двух треугольниковСкачать

Нахождение пересечения двух треугольников

Пересечение плоскостей треугольников

Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.

Пересечение плоскостей заданных треугольниками

  1. Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f. Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3»=A»B»∩f и 5»=A»С»∩f, определяем положение (∙)3′ и (∙)5′ по линиям связи на ΔA’B’C’.
  2. Находим горизонтальную проекцию N’=D’E’∩3’5′ точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N» расположена на фронтальном следе f на одной линии связи с N’.

Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f. С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.

  • Через N и K проводим искомую прямую NK – линию пересечения ΔABC и ΔDEF.
  • Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π2. Так как (∙)5′ находится ближе к наблюдателю, чем (∙)4′, то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π2. С противоположной стороны от линии N»K» видимость треугольников меняется.

    Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π1. Так как (∙)6» находится выше, чем (∙)7», то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π1. С противоположной стороны от линии N’K’ видимость треугольников меняется.

    📽️ Видео

    Линия пересечения плоскостей заданных треугольником и следами #задачипоначертательнойгеометрииСкачать

    Линия пересечения плоскостей заданных треугольником и следами #задачипоначертательнойгеометрии

    Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 2Скачать

    Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 2

    Построение линии пересечения двух треугольников.Скачать

    Построение линии пересечения двух треугольников.

    Построение линии пересечения двух треугольников. Анимация.Скачать

    Построение линии пересечения двух треугольников. Анимация.

    Пересечение плоскостей (треугольника и четырёхугольника)Скачать

    Пересечение плоскостей (треугольника и четырёхугольника)

    Построить линию пересечения двух плоскостей заданных треугольниками DEF и STUСкачать

    Построить линию пересечения двух плоскостей заданных треугольниками DEF и STU

    Взаимное пересечение двух плоскостейСкачать

    Взаимное пересечение двух плоскостей

    Линия пересечения двух плоскостей, заданных своими следамиСкачать

    Линия пересечения двух плоскостей, заданных своими следами

    Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

    Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

    Пересечение плоскостей, заданных параллельными и пересекающимися прямымиСкачать

    Пересечение плоскостей, заданных параллельными и пересекающимися прямыми

    Построение линии пересечения двух плоскостейСкачать

    Построение линии пересечения двух плоскостей

    Построение следов плоскостиСкачать

    Построение следов плоскости

    Видеопример пересечение треугольниковСкачать

    Видеопример пересечение треугольников

    Линия пересечения двух плоскостей заданных треугольниками #задачипоначертательной #видеокомпасСкачать

    Линия пересечения двух плоскостей заданных треугольниками #задачипоначертательной #видеокомпас

    Построить линию пересечения треугольников ABC и DEF. Вариант 10Скачать

    Построить линию пересечения треугольников ABC и DEF. Вариант 10
    Поделиться или сохранить к себе: