В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи. Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.
Основные свойства площадей.
Свойство №1
Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться.
Доказательство: Рассмотрим ▲ ABC и ▲ ADC. Они имеют общее основание и равные высоты, так как прямые AC и BD параллельные, то расстояние между ними равно h — высоте ▲ ABC и ▲ ADC . Если площадь треугольника находится по формуле $$S = frac cdot a cdot h$$, то $$S_ = S_ = frac cdot AC cdot h$$.
Свойство №2
Доказательство: Пусть h1 = h2 в двух треугольниках с основаниями a и b. Рассмотрим отношение площадей этих треугольников $$frac<S_><S_>= frac<frac cdot a cdot h_><frac cdot b cdot h_>$$. Упростив, получим $$frac<S_><S_>= frac$$.
Свойство №3
Если два треугольника имеют общий угол, то их площади относятся как произведение сторон, заключающих этот угол.
Доказательство: Рассмотрим ▲ABC и ▲MBN с общим углом B , где AB = a, BC = b, MB = a1и NB = b1. Пусть S1 = SMBN и S2 = SABC . Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$, рассмотрим отношение площадей ▲ABC и ▲MBN .
Свойство №4
Отношение площадей подобных треугольников равны квадрату коэффициента подобия.
Доказательство: Рассмотрим ▲ABC и ▲MBN . Пусть AB = k MB, BC = k NB и $$angle ABC = angle MBN$$. Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$ , рассмотрим отношение подобных площадей ▲ABC и ▲MBN . Тогда $$frac<S_><S_> = frac<frac cdot AB cdot BC cdot sin B><frac cdot MB cdot NB cdot sin B>= frac = k^$$ .
Медиана треугольника делит его на две равновеликие части.
Доказательство: Рассмотрим ▲ABC . Пусть медиана BM , тогда $$AM = MC = fracAC$$. Медиана делит треугольник на два с одинаковой высотой. Найдем площади треугольников ▲ABM и ▲MBC по формуле $$S = fraccdot a cdot h$$. Получим $$S_ = fraccdot AM cdot h$$ и $$S_ = fraccdot MC cdot h$$. Значит $$S_ = S_$$.
Свойство №6
Медианы треугольника делят его на три равновеликие части.
Доказательство: Рассмотрим ▲ABC . Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники ▲AOB , ▲BOC , ▲AOC . Пусть их площади равны соответственно S1, S2, S3. А площадь ▲ABC равна S. Рассмотрим ▲ABK и ▲CBK , они равной площади, т.к. BK медиана. В треугольнике ▲AOC OK — медиана, значит площади треугольников ▲AOK и ▲COK равны. Отсюда следует, что S1 = S2 . Аналогично можно доказать, что S2 = S3 и S3 = S1 .
Средние линии треугольника площади S отсекают от него треугольники площади .
Доказательство: Рассмотрим ▲ABC . NM — средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_ = frac cdot NM cdot h_= frac(frac cdot AC)(fraccdot h) = fraccdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC .
Медианы треугольника делят его на 6 равновеликих частей.
Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать
Основные свойства площадей треугольников
Факт 1. (bullet) Средние линии треугольника разбивают его на 4 равных треугольника. Соответственно, площади этих треугольников равны.
Факт 2. (bullet) Медиана треугольника делит его на два треугольника, равных по площади (равновеликих).
Факт 3. (bullet) Все 3 медианы треугольника делят его на 6 равновеликих треугольников.
Факт 4. (bullet) Площади треугольников, имеющих одинаковый угол, относятся как произведения сторон, образующих этот угол.
Факт 5. (bullet) Площади треугольников, имеющих одинаковое основание, относятся как высоты, проведенные к этим основаниям.
Факт 6. (bullet) Площади треугольников, имеющих одинаковую высоту, относятся как основания, к которым проведена эта высота.
Факт 7. (bullet) Если прямые (p) и (q) параллельны, то
Факт 8. (bullet) Отношение площадей подобных треугольников равно квадрату коэффициента подобия. (bullet) Отношение периметров подобных треугольников равно коэффициенту подобия.
Видео:Отношение площадей треугольников с равным угломСкачать
Урок геометрии по теме «Отношение площадей треугольников, имеющих равный угол». 8-й класс
Разделы: Математика
Класс: 8
Тип урока: урок изучения нового материала.
Цели урока:
Образовательные:
сформулировать и доказать теорему об отношении площадей треугольников, имеющих один равный угол;
применить теорему при решении задач на нахождение площадей многоугольников.
Воспитательные: продолжать воспитывать самостоятельность и самоконтроль.
I. Организационный момент
Сообщается тема урока, формулируются его цели.
II. Актуализация знаний учащихся
1. Устный опрос (фронтальная работа с классом).
Ответьте на вопросы:
1) Какие фигуры называются равносоставленными? 2) Как называются фигуры, имеющие равную площадь? 3) Верно ли, что равные фигуры имеют равные площади? 4) Верно ли, что равносоставленные фигуры имеют равные площади? 5) Верно ли, что разные фигуры имеют равные площади? 6) В треугольнике АВС АВ = 3АС. — Чему равно отношение высот треугольника, проведенных из вершин В и С? 7) Катеты прямоугольного треугольника 6 см и 8 см. Длина гипотенузы 10 см. Вычислите высоту, проведенную к гипотенузе. 8) Дана трапеция АВСD с основаниями АВ и СD. Докажите, что: а) треугольники АВD и ВАС имеют равные площади; б) треугольники АОD и ВОС имеют равные площади; 9) В треугольнике АВС проведена медиана ВD. Во сколько раз площадь треугольника АВD меньше площади треугольника АВС? Объясните. (Приложение 1)
2. Проверка домашнего задания.
Задача № 40 рабочей тетради. Один учащийся читает решение по своей тетради, остальные обсуждают и проверяют.
На рисунке точка М делит сторону АС треугольника ABC в отношении AM : МС = 2:3. Площадь треугольника ABC равна 180 см 2 . Найдите площадь треугольника AВM.
***Далее проверяется дополнительная задача. Ее решение предлагается воспроизвести одному из учащихся, справившихся с этой задачей.
Дополнительная задача. Точка Е – середина стороны АВ треугольника АВС, а точки М и Н делят сторону ВС на три равные части, ВМ = МН = НС. Найти площадь треугольника ЕМН, если площадь треугольника АВС равна S.
III. Изучение нового материала
Формулирование и доказательство теоремы.
Теорема: Если угол одного треугольника равен углу другого треугольника, то отношение площадей этих треугольников равно отношению произведений сторон, заключающих равные углы.
3. Анализируем условие теоремы.
– Сформулируйте что дано в данной теореме: сколько треугольников рассматривается, какое условие накладывается на них? Записываем условие теоремы:
– Сформулируйте заключение данной теоремы. – Что называется отношением двух величин? – О каких отношениях идет речь в теореме? – Произведения каких сторон треугольников будем рассматривать, учитывая, что 2
Задача 2. Дано: 2 Найти: SKMN.
Задача 3. (с записью в тетради). Дано: ОА=8см; ОВ=6см; ОС=5см; SАОВ=36см 2 . Найти SCOD