Отношение треугольников в трапеции

Отношение треугольников в трапеции

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.^$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4.^$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

Отношение треугольников в трапеции

$$ 4.^$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.^$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.^$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.^$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

Отношение треугольников в трапеции

$$ 4.^$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.^$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

Отношение треугольников в трапеции

$$ 4.^$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.^$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.^$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.^$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«||«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

`d^2=c^2+ab`.

Отношение треугольников в трапеции

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.^$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

Отношение треугольников в трапеции

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4.^$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Отношение треугольников в трапеции

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Отношение треугольников в трапеции

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.^$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.^$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.^$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.^$$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.^$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

Видео:Трапеция. Отношение площадей треугольников. Свойства диагоналей трапецииСкачать

Трапеция. Отношение площадей треугольников. Свойства диагоналей трапеции

Узнать ещё

Знание — сила. Познавательная информация

Видео:Задача 15 ОГЭ: подобные треугольники в трапецииСкачать

Задача 15 ОГЭ: подобные треугольники в трапеции

Подобные треугольники в трапеции

Рассмотрим базовые задачи на подобные треугольники в трапеции.

I. Точка пересечения диагоналей трапеции — вершина подобных треугольников.

Отношение треугольников в трапеции

Рассмотрим треугольники AOD и COB.

Отношение треугольников в трапеции

Визуализация облегчает решение задач на подобие. Поэтому подобные треугольники в трапеции выделим разными цветами.

1) ∠AOD= ∠ COB (как вертикальные);

2) ∠DAO= ∠ BCO (как внутренние накрест лежащие при AD ∥ BC и секущей AC).

Следовательно, треугольники AOD и COB подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Отношение треугольников в трапеции

Одна из диагоналей трапеции равна 28 см и делит другую диагональ на отрезки длиной 5 см и 9 см. Найти отрезки, на которые точка пересечения диагоналей делит первую диагональ.

AO=9 см, CO=5 см, BD=28 см. BO =?, DO- ?

Доказываем подобие треугольников AOD и COB. Отсюда

Отношение треугольников в трапеции

Выбираем нужные отношения:

Отношение треугольников в трапеции

Пусть BO=x см, тогда DO=28-x см. Следовательно,

Отношение треугольников в трапеции

Отношение треугольников в трапеции

Отношение треугольников в трапеции

Отношение треугольников в трапеции

BO=10 см, DO=28-10=18 см.

Ответ: 10 см, 18 см.

Известно, что О — точка пересечения диагоналей трапеции ABCD (AD ∥ BC). Найти длину отрезка BO, если AO:OC=7:6 и BD=39 см.

Аналогичн0, доказываем подобие треугольников AOD и COB и

Отношение треугольников в трапеции

Пусть BO=x см, тогда DO=39-x см. Таким образом,

Отношение треугольников в трапеции

Отношение треугольников в трапеции

Отношение треугольников в трапеции

II. Продолжения боковых сторон трапеции пересекаются в точке.

Отношение треугольников в трапеции

Аналогично задаче I, рассмотрим треугольники AFD и BFC:

2) ∠ DAF= ∠ CBF (как соответственные углы при BC ∥ AD и секущей AF).

Следовательно, треугольники AFD и BFC подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Отношение треугольников в трапеции

Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке F. Меньшее основание BC равно 4 см, BF=5 см, AB=15 см. Найти большее основание трапеции.

Доказываем, треугольники AFD и BFC — подобны.

Отношение треугольников в трапеции

Отношение треугольников в трапеции

Отношение треугольников в трапеции

Отношение треугольников в трапеции

Отношение треугольников в трапеции

В следующий раз рассмотрим задачи на отношение площадей подобных треугольников.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Отношение треугольников в трапеции

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Отношение треугольников в трапеции

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отношение треугольников в трапеции

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Отношение треугольников в трапеции

Видео:Задание 25 Первый признак подобия треугольников в равнобокой трапецииСкачать

Задание 25  Первый признак подобия треугольников в равнобокой трапеции

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Отношение треугольников в трапеции

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Отношение треугольников в трапеции

3. Треугольники Отношение треугольников в трапециии Отношение треугольников в трапеции, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Отношение треугольников в трапеции

Отношение площадей этих треугольников есть Отношение треугольников в трапеции.

Отношение треугольников в трапеции

4. Треугольники Отношение треугольников в трапециии Отношение треугольников в трапеции, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Отношение треугольников в трапеции

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Отношение треугольников в трапеции

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Отношение треугольников в трапеции

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Отношение треугольников в трапеции

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Отношение треугольников в трапеции

Видео:Задание 26 Отношение площадейСкачать

Задание 26 Отношение площадей

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Отношение треугольников в трапеции

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Отношение треугольников в трапеции

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Отношение треугольников в трапеции

Видео:Задание 25 Подобные треугольники в трапеции. Второй признак подобияСкачать

Задание 25  Подобные треугольники в трапеции. Второй признак подобия

Вписанная окружность

Если в трапецию вписана окружность с радиусом Отношение треугольников в трапециии она делит боковую сторону точкой касания на два отрезка — Отношение треугольников в трапециии Отношение треугольников в трапеции, то Отношение треугольников в трапеции

Отношение треугольников в трапеции

Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Площадь

Отношение треугольников в трапецииили Отношение треугольников в трапециигде Отношение треугольников в трапеции– средняя линия

Отношение треугольников в трапеции

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

📽️ Видео

Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать

Подобие треугольников (ч.2) | Математика | TutorOnline

Подобные треугольники в трапеции. Площадь трапеции. Геометрия 8-9 классСкачать

Подобные треугольники в трапеции. Площадь трапеции. Геометрия 8-9 класс

ОГЭ Задание 24 Подобные треугольники в трапецииСкачать

ОГЭ Задание 24 Подобные треугольники в трапеции

Как выразить площадь трапеции через площади треугольников, ограниченных диагоналями и основаниями?Скачать

Как выразить площадь трапеции через площади треугольников, ограниченных диагоналями и основаниями?

Площадь параллелограмма, треугольника, трапецииСкачать

Площадь параллелограмма, треугольника, трапеции

Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

Задание 26 Трапеция Отношение площадейСкачать

Задание 26 Трапеция Отношение площадей

Площадь параллелограмма треугольника и трапецииСкачать

Площадь параллелограмма треугольника и трапеции

Подобие треугольников. Трапеция.Скачать

Подобие треугольников.  Трапеция.

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

Геометрия 8 класс (Урок№16 - Средняя линия треугольников и трапеции.)Скачать

Геометрия 8 класс (Урок№16 - Средняя линия треугольников и трапеции.)
Поделиться или сохранить к себе: